A New Method of Simulation of Cosmic-ray Ensembles Initiated by Synchrotron Radiation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- The primary electron energy is 3.981 EeV
- The starting point of the primary electron is the Galactic center, the origin point of the galactocentric coordinate system, (0.0, 0.0, 0.0)
- The initial direction of the primary electron is (−1.0, 0.0, 0.0) (towards the Solar System)
- The galactic magnetic field is described by the JF12 model [37]
- The minimum energy threshold is 10 PeV
- The synchrotron radiation threshold is 1 GeV
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRE | Cosmic-ray ensembles |
UHE | Ultra-high energy |
UHECR | Ultra-high energy cosmic rays |
CREDO | Cosmic-Ray Extremely Distributed Observatory |
References
- Bhattacharjee, P.; Sigl, G. Origin and propagation of extremely high-energy cosmic rays. Phys. Rept. 2000, 327, 109–247. [Google Scholar] [CrossRef]
- Swann, W.F. A Mechanism of acquirement of cosmic-ray energies by electrons. Phys. Rev. 1933, 43, 217–220. [Google Scholar] [CrossRef]
- Neronov, A.Y.; Semikoz, D.V.; Tkachev, I.I. Ultra-high energy cosmic ray production in the polar cap regions of black hole magnetospheres. New J. Phys. 2009, 11, 065015. [Google Scholar] [CrossRef]
- Gao, S.; Fedynitch, A.; Winter, W.; Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 2019, 3, 88–92. [Google Scholar] [CrossRef]
- Kotera, K.; Olinto, A.V. The Astrophysics of Ultrahigh Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 2011, 49, 119–153. [Google Scholar] [CrossRef]
- Aloisio, R.; Berezinsky, V.; Blasi, P. Ultra high energy cosmic rays:implications of Auger data for source spectra and chemical composition. J. Cosmol. Astropart. Phys. 2014, 10, 020. [Google Scholar] [CrossRef]
- Alves Batista, R.; Biteau, J.; Bustamante, M.; Dolag, K.; Engel, R.; Fang, K.; Kampert, K.H.; Kostunin, D.; Mostafa, M.; Murase, K.; et al. Open Questions in Cosmic-Ray Research at Ultrahigh Energies. Front. Astron. Space Sci. 2019, 6, 23. [Google Scholar] [CrossRef]
- Kuzmin, V.A.; Rubakov, V.A. Ultra-high energy cosmic rays: A window to post-inflationary reheating epoch of the Universe? Phys. Atom. Nucl. 1998, 61, 1028–1030. [Google Scholar]
- Coleman, S.R.; Glashow, S.L. Cosmic ray and neutrino tests of special relativity. Phys. Lett. B 1997, 405, 249–252. [Google Scholar] [CrossRef]
- Domokos, G.; Kovesi-Domokos, S. Strongly interacting neutrinos and the highest energy cosmic rays. Phys. Rev. Lett. 1999, 82, 1366–1369. [Google Scholar] [CrossRef]
- Alcantara, E.; Anchordoqui, L.A.; Soriano, J.F. Hunting for superheavy dark matter with the highest-energy cosmic rays. Phys. Rev. D 2019, 99, 103016. [Google Scholar] [CrossRef] [Green Version]
- Gelmini, G.B.; Kalashev, O.E.; Semikoz, D.V. GZK photons as ultra-high-energy cosmic rays. JETP 2008, 106, 1061. [Google Scholar] [CrossRef]
- Berezinsky, V.; Kachelrieß, M.; Vilenkin, A. Ultrahigh energy cosmic rays without Greisen-Zatsepin-Kuzmin cutoff. Phys. Rev. Lett. 1997, 79, 4302. [Google Scholar] [CrossRef]
- Bietenholz, W. Cosmic rays and the search for a Lorentz Invariance Violation. Phys. Rept. 2011, 505, 145–185. [Google Scholar] [CrossRef]
- Rubtsov, G.; Satunin, P.; Sibiryakov, S. Prospective constraints on Lorentz violation from ultrahigh-energy photon detection. Phys. Rev. D 2014, 89, 123011. [Google Scholar] [CrossRef]
- Rubtsov, G.; Satunin, P.; Sibiryakov, S. Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. J. Cosmol. Astropart. Phys. 2017, 1705, 049. [Google Scholar] [CrossRef]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Upper limit on the flux of photons with energies above 1019 eV using the Telescope Array surface detector. Phys. Rev. D 2013, 88, 112005. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Search for photons with energies above 1018 eV using the hybrid detector of the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2020, 9, E02. [Google Scholar] [CrossRef]
- Berezinsky, V.; Gazizov, A.; kalashev, O. Cascade photons as test of protons in UHECR. Astropart. Phys. 2016, 84, 52–61. [Google Scholar] [CrossRef]
- Gavish, E.; Eichler, D. On ultra high energy cosmic rays and their resultant gamma rays. Astrophys. J. 2016, 822, 56. [Google Scholar] [CrossRef]
- Kachelrieß, M.; Kalashev, O.; Ostapchenko, S.; Semikoz, D.V. A minimal model for extragalactic high-energy particles. Phys. Rev. D 2017, 96, 083006. [Google Scholar] [CrossRef] [Green Version]
- Góra, D.; Cheminant, K.A.; Alvarez-Castillo, D.; Bratek, Ł.; Dhital, N.; Duffy, A.R.; Homola, P.; Jagoda, P.; Jałocha, J.; Kasztelan, M.; et al. Cosmic-Ray Extremely Distributed Observatory: Status and perspectives. Universe 2018, 4, 111. [Google Scholar]
- Kamiński, R.; Wibig, T.; Castillo, D.A.; Cheminant, K.A.; Ćwikła, A.; Duffy, A.R.; Góra, D.; Homola, P.; Jagoda, P.; Kasztelan, M.; et al. CREDO project. Acta Phys. Pol. B 2019, 50, 2001. [Google Scholar] [CrossRef]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.E.; Almeida Cheminant, K.; et al. Cosmic-Ray Extremely Distributed Observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Ochi, N.; Iyono, A.; Konishi, T.; Nakamura, T.; Nakatsuka, T.; Ohara, S.; Ohmori, N.; Okei, K.; Saitoh, K.; Tada, J.; et al. The status and future prospect of the LAAS project. In Proceedings of the 28th International Cosmic Ray Conference, Tsukuba, Japan, 31 July–7 August 2003; Volume 2, pp. 1005–1008. [Google Scholar]
- Carlson, B.E.; Brobeck, E.; Jillings, C.J.; Larson, M.B.; Lynn, T.W.; McKeown, R.D.; Hill, J.E.; Falkowski, B.J.; Seki, R.; Sepikas, J.; et al. Search for correlated high energy cosmic ray events with CHICOS. J. Phys. G Nucl. Part. Phys. 2005, 31, 409–416. [Google Scholar] [CrossRef]
- Svanidze, M.; Verbetsky, Y.; Bagaturia, Y.; Javrishvili, A.; Iashvili, A.; Tskhadadze, E.; Kakabadze, L.; Kokorashvili, D. First results obtained by the GELATICA Network of the Cosmic Rays Stations in Georgia. GESJ Phys. 2011, 1, 84–96. [Google Scholar]
- Smolek, K.; Cermak, J.; Lichard, P.; Nyklicek, M.; Pospisil, S.; Pridal, P.; Smejkal, J.; Stekl, I.; Vicha, V.; Vojik, M. Measurement of High Energy Cosmic Rays in the Experiment CZELTA. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 720–721. [Google Scholar]
- Bibrzycki, Ł.; Burakowski, D.; Homola, P.; Piekarczyk, M.; Niedźwiecki, M.; Rzecki, K.; Stuglik, S.; Tursunov, A.; Hnatyk, B.; Castillo, D.E.; et al. Towards a global cosmic ray sensor network: CREDO Detector as the first open-source mobile application enabling detection of penetrating radiation. Symmetry 2020, 12, 1802. [Google Scholar] [CrossRef]
- Karbowiak, M.; Wibig, T.; Alvarez Castillo, D.; Beznosko, D.; Duffy, A.R.; Góra, D.; Homola, P.; Kasztelan, M.; Niedźwiecki, M. Determination of zenith angle dependence of incoherent cosmic ray muon flux using smartphones of the CREDO project. Appl. Sci. 2021, 11, 1185. [Google Scholar] [CrossRef]
- Bar, O.; Bibrzycki, Ł.; Niedźwiecki, M.; Piekarczyk, M.; Rzecki, K.; Sośnicki, T.; Stuglik, S.; Frontczak, M.; Homola, P.; Alvarez-Castillo, D.E.; et al. Zernike moment based classification of cosmic ray candidate hits from CMOS sensors. Sensors 2021, 21, 7718. [Google Scholar] [CrossRef]
- Clay, R.; Singh, J.; Homola, P.; Bar, O.; Beznosko, D.; Bhatt, A.; Bhatta, G.; Bibrzycki, Ł.; Budnev, N.; Alvarez-Castillo, D.E.; et al. A search for cosmic ray bursts at 0.1 PeV with a small Air Shower Array. Symmetry 2022, 14, 501. [Google Scholar] [CrossRef]
- Batista, R.A.; Dundovic, A.; Erdmann, M.; Kampert, K.H.; Kuempel, D.; Müller, G.; Sigl, G.; van Vliet, A.; Walz, D.; Winchen, T. CRPropa3—A public astrophysical simulation framework for propagating extraterrestrial ultra-high energy particles. J. Cosmol. Astropart. Phys. 2016, 2016, 38. [Google Scholar] [CrossRef]
- Merten, L.; Tjus, J.B.; Fichtner, H.; Eichmann, B.; Sigl, G. CRPropa3.1—A low energy extension based on stochastic differential equations. J. Cosmol. Astropart. Phys. 2017, 2017, 46. [Google Scholar] [CrossRef]
- CRPropa—Cosmic Ray Propagation Framework. Available online: https://crpropa.desy.de/ (accessed on 24 August 2022).
- Cash, J.R.; Karp, A.H. A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 1990, 16, 201–222. [Google Scholar] [CrossRef]
- Jansson, R.; Farrar, G. A new model of the Galactic magnetic field. Astrophys. J. 2012, 757, 14. [Google Scholar] [CrossRef]
- Sushchov, O. Formation and propagation of cosmic-ray ensembles. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 15–22 July 2021; Volume 395, pp. 1–9. [Google Scholar]
Figure | Step | Max. prop. | Equidist. | , | Photons | , | , | , |
---|---|---|---|---|---|---|---|---|
, pc | , pc | mpc | Emitted | G | PeV | PeV | ||
Figure 5a | 6 | 6.016 | 2.49 | 55,419 | 5.55 | 3041.0 | 2764.6 | |
Figure 5b | 23 | 1.212 | 10 | 243,374 | 5.52 | 613.0 | 568.5 | |
Figure 5c | 113 | 0.136 | 10 | 18,2691 | 5.21 | 83.60 | 82.86 | |
Figure 5d | 277 | 0.017 | 10 | 39,984 | 5.32 | 35.09 | 34.96 | |
Figure 5e | 342 | 19.07 | 10 | 15,392 | 5.76 | 27.51 | 27.41 | |
Figure 5f | 400 | 1.107 | 10 | 4694 | 6.13 | 22.52 | 22.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sushchov, O.; Homola, P.; Piekarczyk, M.; Ruimi, O.; Almeida Cheminant, K.; Bar, O.; Bibrzycki, Ł.; Hnatyk, B.; Kovács, P.; Łozowski, B.; et al. A New Method of Simulation of Cosmic-ray Ensembles Initiated by Synchrotron Radiation. Symmetry 2022, 14, 1961. https://doi.org/10.3390/sym14101961
Sushchov O, Homola P, Piekarczyk M, Ruimi O, Almeida Cheminant K, Bar O, Bibrzycki Ł, Hnatyk B, Kovács P, Łozowski B, et al. A New Method of Simulation of Cosmic-ray Ensembles Initiated by Synchrotron Radiation. Symmetry. 2022; 14(10):1961. https://doi.org/10.3390/sym14101961
Chicago/Turabian StyleSushchov, Oleksandr, Piotr Homola, Marcin Piekarczyk, Ophir Ruimi, Kévin Almeida Cheminant, Olaf Bar, Łukasz Bibrzycki, Bohdan Hnatyk, Péter Kovács, Bartosz Łozowski, and et al. 2022. "A New Method of Simulation of Cosmic-ray Ensembles Initiated by Synchrotron Radiation" Symmetry 14, no. 10: 1961. https://doi.org/10.3390/sym14101961
APA StyleSushchov, O., Homola, P., Piekarczyk, M., Ruimi, O., Almeida Cheminant, K., Bar, O., Bibrzycki, Ł., Hnatyk, B., Kovács, P., Łozowski, B., Niedźwiecki, M., Stuglik, S., Tursunov, A., & Wibig, T. (2022). A New Method of Simulation of Cosmic-ray Ensembles Initiated by Synchrotron Radiation. Symmetry, 14(10), 1961. https://doi.org/10.3390/sym14101961