Next Article in Journal
New Features in Crystal Orientation and Phase Mapping for Transmission Electron Microscopy
Previous Article in Journal
Depthwise Separable Relation Network for Small Sample Hyperspectral Image Classification
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Pseudo Almost Automorphic Solutions for Stochastic Differential Equations Driven by Lévy Noise and Its Optimal Control

1
College of Computer Science, Chengdu University, Chengdu 610106, China
2
Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu 610106, China
3
College of Mathematics, Sichuan University, Chengdu 610065, China
*
Author to whom correspondence should be addressed.
Symmetry 2021, 13(9), 1674; https://doi.org/10.3390/sym13091674
Submission received: 8 July 2021 / Revised: 29 August 2021 / Accepted: 6 September 2021 / Published: 11 September 2021
(This article belongs to the Section Mathematics)

Abstract

:
As we know, the periodic functions are symmetric within a cycle time, and it is meaningful to generalize the periodicity into more general cases, such as almost periodicity or almost automorphy. In this work, we introduce the concept of Poisson S γ 2 -pseudo almost automorphy (or Poisson generalized Stepanov-like pseudo almost automorphy) for stochastic processes, which are almost-symmetric within a suitable period, and establish some useful properties of such stochastic processes, including the composition theorems. In addition, we apply a Krasnoselskii–Schaefer type fixed point theorem to obtain the existence of pseudo almost automorphic solutions in distribution for some semilinear stochastic differential equations driven by Lévy noise under S γ 2 -pseudo almost automorphic coefficients. In addition, then we establish optimal control results on the bounded interval. Finally, an example is provided to illustrate the theoretical results obtained in this paper.

1. Introduction

It is well known that symmetry exists in every corner of the world, which may help us explore the truth around our life. Particularly, if there is a periodic function F with a periodicity τ , then it holds that F ( t ) = F ( t + τ ) , which means the periodic functions are symmetric within a cycle time. However, the symmetry may not always appear in the accurate sense; it is meaningful to generalize the periodic functions into more general cases, for instance, almost periodicity or almost automorphy. For example, an almost periodic function f ( t ) = sin t + sin 2 t and a pseudo almost automorphic function f ( t ) = cos 1 2 + sin t + sin 2 t + e | t | ( 1 + | t | ) 2 . (About the almost-symmetry, please see Figure 1 and Figure 2).
In this paper, we will introduce the concept of Poisson S γ 2 -PAA(or Poisson generalized Stepanov-like pseudo almost automorphy) for stochastic processes, which are almost-symmetric within a suitable period.
Liang et al. [1] established the concept of pseudo almost automorphy (PAA, for short) and also provided the composition theorems under a uniformly continuous condition. Diagana [2] generalized the concept of PAA into S p -PAA, and then obtained the asymptotic behavior of the solutions for some differential equations. Mao et al. [3] established the concept of square-mean PAA, which generalized the concept PAA into stochastic cases, and also obtained the square-mean PAA solutions. For more applications of S p -PAA, one can see [4] and the references therein. In 2012, the concept of S γ p -PAA was investigated by Diagana [5], and then established the existence results of differential equations of Sobolev type. After this work, Tang et al. [6] introduced the concept of S γ p -WPAA in stochastic cases, and proved some interesting results on local stability.
There is a lot of interest from researchers in almost periodic and almost automorphic solutions in stochastic cases; for more details, we refer to [7,8,9,10] and the references therein. Furthermore, stochastic equations driven by Lévy process was investigated by many researchers in the last decade. Wang and Liu [11] mainly studied the square-mean almost period stochastic processes; then, the well-posedness of stochastic evolution equations driven by Lévy noise was obtained. Liu and Sun [12] established the existence of almost automorphic solutions in distribution to some equations driven by Lévy noise. Li [13] established the existence results of WPAA solutions in distribution for some SPDEs driven by Lévy noise; for related works, we refer to [14,15,16]. Motivated by the works [5,6,12,15], we introduce the concept of Poisson S γ 2 -PAA (or Poisson generalized Stepanov-like pseudo almost automorphy) and provide some composition theorems of such stochastic processes, and then study the existence of PAA solutions in distribution for some semilinear stochastic equations driven by Lévy noise under S γ 2 -pseudo almost automorphic coefficients.
Optimal control problem has a wide impact on many fields in the real world, such as celestial mechanic, engineering, biology, economy, and so on; it always minimizes or maximizes a cost functional over some admissible control sets, see monographs [17,18]. In 2007, Mahmudov et al. [19] investigated the backward stochastic equations in infinite-dimensional spaces and obtained its optimal control. After that, fractional integro-differential systems are deeply studied by Wang et al. [20,21], and also some important optimal control problems are solved. In recent days, Rajivganthi-Muthukumar [22] mainly investigated some special optimal control problems and the control pairs were proved. However, to our best knowledge, there are only a few research works on the existence of optimal control pairs for stochastic equations driven by the Lévy process. Motivated by the works [19,20,22], we study a classic optimal control problem for stochastic equations driven by Lévy noise, and the existence of optimal control will be proved.
The outline of this paper is as follows: in Section 2, some definitions and basic properties are introduced, in particular, the concept of Poisson S γ 2 -AA and Poisson S γ 2 -PAA. The new composition theorem of such processes under some suitable conditions are also studied. After that, we investigate the asymptotic behavior of solutions for some semilinear stochastic equations driven by Lévy noise by the Krasnoselskii–Schaefer type fixed point theorem. In the 4th part, we establish the optimal control results on a bounded interval. In Section 5, an example is provided to illustrate our theoretic results.

2. Preliminaries

In the following, we introduce some basic notations and properties which will be used in the sequel. We suppose that ( H , · ) and ( V , | · | ) are real separable Hilbert space throughout the paper. Later in Section 2.1, the V -valued Lévy processes are introduced. ( Ω , F , P ) is supposed to be a completed probability space and L 2 ( P , H ) denotes the space of all H -valued random variables Y such that
E Y 2 = Ω Y 2 d P <
Note that, when equipped with the norm
Y 2 = ( E Y 2 ) 1 2 ,
L 2 ( P , H ) is a Hilbert space.
In addition, C ( R , L 2 ( P , H ) ) denotes the collection of all continuous functions from R into L 2 ( P , H ) , and B C ( R , L 2 ( P , H ) ) stands for the collection of all bounded continuous functions from R into L 2 ( P , H ) . Note that B C ( R , L 2 ( P , H ) ) is a Banach space with the sup norm
Y = sup t R ( E Y ( t ) 2 ) 1 2
Furthermore, the spaces C ( R × L 2 ( P , H ) , L 2 ( P , H ) and B C ( R × L 2 ( P , H ) , L 2 ( P , H ) can be explained in a similar way.

2.1. The Introduction of the Lévy Process

In this part, the Lévy process and the Lévy–Itô decomposition theorem are introduced, and we refer to the literature [12,23,24,25] for more details.
Definition 1
([23]). The Lévy process is called a V -valued stochastic process L = ( L ( t ) , t 0 ) , if
(i)
L ( 0 ) = 0 a.s.;
(ii)
L has independent and stationary increments;
(iii)
For all ϵ > 0 and s > 0 ,
lim t s P ( | L ( t ) L ( s ) | V > ϵ ) = 0
Poisson random measure. For a given Lévy process L, it is easy to define Δ L = ( Δ L ( t ) , t 0 ) , which is a jump process satisfying
Δ L ( t ) = L ( t ) L ( t )
for each t 0 . Furthermore, by virtue of Δ L , it can define the following random counting measure
N ( t , B ) ( ω ) : = { 0 s t : Δ L ( s ) ( ω ) B } = 0 s t χ B ( Δ L ( s ) ( ω ) )
for any Borel set B in V 0 , where χ B is the indicator function.
Next, we introduce the Poisson random measure N and the compensated Poisson random measure N ˜ . Firstly, we suppose there is a bounded below Borel set B in V 0 , and ν ( · ) = E ( N ( 1 , · ) ) denotes the intensity measure, from which it holds that N ( t , B ) < almost surely for all t 0 and ( N ( t , B ) , t 0 ) is a Poisson process with intensity ν ( B ) . Meanwhile, the compensated Poisson random measure N ˜ defined by
N ˜ ( t , B ) = N ( t , B ) t ν ( B )
where the Poisson random measure N satisfies
V ( | y | V 2 1 ) ν ( d y ) <
Proposition 1
([23]). (Lévy–Itô decomposition) Suppose L is a V -valued Lévy process; then, a V -valued Wiener process W, an independent Poisson random measure N and also a constant a exist, such that
L ( t ) = a t + W ( t ) + | x | V < 1 x N ˜ ( t , d x ) + | x | V 1 x N ( t , d x )
for each t 0 .
However, from Definition 1, L only is one-sided. In order to finish the research, we need a two-sided Lévy process, i.e.,
L ( t ) = L 1 ( t ) , f o r t 0 L 2 ( t ) , f o r t 0
where L 1 and L 2 are two independent, identically distributed Lévy processes satisfying Proposition 1, and we assume L is defined on the filtered probability space ( Ω , F , P , F t ) t R .
Remark 1.
By (1), it holds that b : = | x | V 1 ν ( d x ) < .
Remark 2.
Furthermore, the increment L ˜ ( t ) : = L ( t + s ) L ( s ) , s R is also a two-sided Lévy process, which is identically distributed with L.

2.2. S γ 2 -Almost Automorphy

Definition 2
([26]). Given a function x : R L 2 ( P , H ) , its Bochner transform x b ( t , s ) is, in the following sense,
x b ( t , s ) : = x ( t + s )
where t R , s [ 0 , 1 ] .
Remark 3.
(i) If φ ( t , s ) = f b ( t , s ) is the Bochner transform of a certain function f, then φ ( t + τ , s τ ) = φ ( t , s ) , for all t R , s [ 0 , 1 ] and τ [ s 1 , s ] ; Similarly, the converse is also true.
(ii) It also follows that, if f = l + m , then f b = l b + m b . In addition, ( λ f ) b = λ f b for each scalar λ.
Definition 3
([27,28]). Given a function f : R × L 2 ( P , H ) L 2 ( P , H ) , for each Y L 2 ( P , H ) , its Bochner transform is
f b ( t , s , Y ) : = f ( t + s , Y )
Definition 4
([29]). A function Y C ( R , L 2 ( P , H ) ) is called square-mean almost automorphic if, for every sequence of real numbers ( s n ) n N , there exist a subsequence ( s n ) n N and a function Y ˜ C ( R , L 2 ( P , H ) ) such that
lim n E Y ( t + s n ) Y ˜ ( t ) 2 = 0 and lim n E Y ˜ ( t s n ) Y ( t ) 2 = 0
hold for each t R . We use the notation A A ( R , L 2 ( P , H ) to denote the collection of all square-mean almost automorphic functions.
Definition 5
([30]). Let T = { ( t , s ) R × R , t s } . A continuous function U : T L 2 ( P , H ) is called positively bi-almost automorphic if, for every sequence of real numbers ( s n ) n N , there exist a subsequence ( s n ) n N and a function U ˜ C ( T , L 2 ( P , H ) ) such that
lim n E U ( t + s n , s + s n ) U ˜ ( t , s ) 2 = 0 and lim n E U ˜ ( t s n , s s n ) U ( t , s ) 2 = 0
hold for each ( t , s ) T . The notation b A A ( T , L 2 ( P , H ) denotes the collection of all such functions.
Definition 6
([26]). The notation B S 2 ( R , L 2 ( P , H ) ) stands for the collection of all Stepanov bounded functions, if the measurable functions Y B S 2 ( R , L 2 ( P , H ) ) , then Y b L ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , d s ) ) . If, with the norm
Y b L ( R , L 2 ) = sup t R ( t t + 1 E Y ( s ) 2 d s ) 1 2 = sup t R ( 0 1 E Y ( t + s ) 2 d s ) 1 2 ,
it is a Banach space.
Definition 7
([31]). A function Y B S 2 ( R , L 2 ( P , H ) ) is Stepanov-like almost automorphic (or S 2 -almost automorphic), if Y b A A ( R , L 2 ( ( 0 , 1 ) ; L 2 ( P , H ) , d s ) ) that is to say, given a function Y L l o c 2 ( R , L 2 ( P , H ) , d s ) , if its Bochner transform Y b : R L 2 ( ( 0 , 1 ) ; L 2 ( P , H ) , d s ) is almost automorphic, then it is S 2 -almost automorphic, i.e., for every sequence of real numbers { s n } , there exist a subsequence { s n } and a function Y ˜ L l o c 2 ( R , L 2 ( P , H ) , d s ) such that
t t + 1 E Y ( s + s n ) Y ˜ ( s ) 2 d s 0 and t t + 1 E Y ˜ ( s s n ) Y ( s ) 2 d s 0
as n pointwise on R . The notation A S 2 ( R , L 2 ( P , H ) ) denotes the collection of such functions.
In the following, we introduce a measurable (weights) function γ : ( 0 , ) ( 0 , ) , which satisfies
γ 0 : = lim ε 0 ε 1 γ ( s ) d s = 0 1 γ ( s ) d s < and m 0 : = inf s ( 0 , ) γ ( s ) > 0
Let U denote the collection of all such measurable (weights) functions and the collection of all such differentiable functions denoted by U .
Definition 8.
Let γ U . A γ d s -measurable functions Y on R with values in L 2 ( P , H ) is called generalized Stepanov bounded, if its Bochner transform Y b L ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . If with the norm
Y S γ 2 = sup t R ( t t + 1 E γ ( s t ) Y ( s ) 2 d s ) 1 2 = sup t R ( 0 1 E γ ( s ) Y ( t + s ) 2 d s ) 1 2 ,
it is a Banach space.
Definition 9
([31]). Suppose γ U . A function Y B S γ 2 ( R , L 2 ( P , H ) ) is called a generalized Stepanov-like almost automorphic (or S γ 2 -almost automorphic), if for a function Y ˜ L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
t t + 1 γ ( s t ) Y ( s + s n ) Y ˜ ( s ) 2 d s = 0 1 γ ( s ) Y ( s + t + s n ) Y ˜ ( s + t ) 2 d s 0 t t + 1 γ ( s t ) Y ˜ ( s s n ) Y ( s ) 2 d s = 0 1 γ ( s ) Y ˜ ( s + t s n ) Y ( s + t ) 2 d s 0
for each t R , as n .
Definition 10
([31]). Let γ U . A function f : R × L 2 ( P , H ) L 2 ( P , H ) , ( t , Y ) f ( t , Y ) with f ( · , Y ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each Y L 2 ( P , H ) , is called S γ 2 -almost automorphic in t R uniformly in Y L 2 ( P , H ) if t f ( t , Y ) is S γ 2 -almost automorphic for each Y L 2 ( P , H ) , that is, for a function f ˜ ( · , Y ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
t t + 1 γ ( s t ) f ( s + s n , Y ) f ˜ ( s , Y ) 2 d s 0
t t + 1 γ ( s t ) f ˜ ( s s n , Y ) f ( s , Y ) 2 d s 0
for each Y L 2 ( P , H ) , as n pointwise on R . The notation A S γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) denotes the collection of all S γ 2 -almost automorphic functions.
Definition 11.
Let γ U . A function J : R × V L 2 ( P , H ) , ( t , x ) J ( t , x ) with J ( · , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each x V , is called Poisson S γ 2 -almost automorphic in t R uniformly in x V if t J ( t , x ) is Poisson S γ 2 -almost automorphic for each x V , that is, for a function J ˜ ( · , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
t t + 1 V γ ( s t ) J ( s + s n , x ) J ˜ ( s , x ) 2 ν ( d x ) d s 0
t t + 1 V γ ( s t ) J ˜ ( s s n , x ) J ( s , x ) 2 ν ( d x ) d s 0
for each x V , as n pointwise on R . The notation Poisson A S γ 2 ( R × V , L 2 ( P , H ) ) denotes the collection of all such functions.
Definition 12.
Let γ U . A function F : R × L 2 ( P , H ) × V L 2 ( P , H ) , ( t , Y , x ) F ( t , Y , x ) with F ( · , Y , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each Y L 2 ( P , H ) , is called Poisson S γ 2 -almost automorphic uniformly in Y L 2 ( P , H ) in t R if t F ( t , Y , x ) is Poisson S γ 2 -almost automorphic for each Y L 2 ( P , H ) , that is, for a function F ˜ ( · , Y , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
t t + 1 V γ ( s t ) F ( s + s n , Y , x ) F ˜ ( s , Y , x ) 2 ν ( d x ) d s 0
t t + 1 V γ ( s t ) F ˜ ( s s n , Y , x ) F ( s , Y , x ) 2 ν ( d x ) d s 0
for each Y L 2 ( P , H ) , as n pointwise on R . The notation Poisson A S γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) denotes the collection of all such functions.
Proposition 2
([32]). Suppose Y A S γ 2 ( R , L 2 ( P , H ) ) and K = { Y ( t ) : t R ¯ } L 2 ( P , H ) is a compact subset, where { Y ( t ) : t R ¯ } denotes the closure of the set. If f A S γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) and there exists L > 0 such that
f ( t , u ) f ( t , v ) L u v
for all u , v L 2 ( P , H ) and t R , then the mapping t f ( t , Y ( t ) ) belongs to the space A S γ 2 ( R , L 2 ( P , H ) ) .
In this paper, we show the new composition theorem of S γ 2 -almost automorphic functions under the following condition.
Suppose L > 0 such that, for all u , v L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and t R ,
t t + 1 γ ( s t ) f ( s , u ) f ( s , v ) 2 d s L t t + 1 γ ( s t ) u v 2 d s .
Theorem 1.
Suppose Y A S γ 2 ( R , L 2 ( P , H ) ) such that K = { Y ( t ) : t R ¯ } L 2 ( P , H ) is a compact subset, where { Y ( t ) : t R ¯ } denotes the closure of the set. If f A S γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) and satisfies ( 3 ) , then the function D : R L 2 ( P , H ) given by D ( t ) = f ( t , Y ( t ) ) is A S γ 2 ( R , L 2 ( P , H ) ) .
Proof. 
Let ( s n ) n N be an arbitrary sequence of real numbers. Since Y A S γ 2 ( R , L 2 ( P , H ) ) and f A S γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) , there exist a subsequence ( s n ) n N and functions Y ˜ L l o c 2 ( R , L 2 ( P , H ) , γ d s ) , f ˜ ( · , Y ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) such that
t t + 1 γ ( s t ) Y ( s + s n ) Y ˜ ( s ) 2 d s 0
t t + 1 γ ( s t ) Y ˜ ( s s n ) Y ( s ) 2 d s 0
as n for each t R .
t t + 1 γ ( s t ) f ( s + s n , Y ) f ˜ ( s , Y ) 2 d s 0
t t + 1 γ ( s t ) f ˜ ( s s n , Y ) f ( s , Y ) 2 d s 0
for each Y L 2 ( P , H ) , as n pointwise on R .
Define the function D ˜ : R L 2 ( P , H ) , D ˜ ( t ) = f ˜ ( t , Y ˜ ( t ) ) . It holds that
D ( s + s n ) D ˜ ( s ) = f ( s + s n , Y ( s + s n ) ) f ( s + s n , Y ˜ ( s ) ) + f ( s + s n , Y ˜ ( s ) ) f ˜ ( s , Y ˜ ( s ) )
Then, by virtue of the mean-value Inequalities and the Lipschitz condition (H1), we can obtain
t t + 1 γ ( s t ) D ( s + s n ) D ˜ ( s ) 2 d s 2 t t + 1 γ ( s t ) f ( s + s n , Y ( s + s n ) ) f ( s + s n , Y ˜ ( s ) ) 2 d s + 2 t t + 1 γ ( s t ) f ( s + s n , Y ˜ ( s ) ) f ˜ ( s , Y ˜ ( s ) ) 2 d s 2 L t t + 1 γ ( s t ) Y ( s + s n ) Y ˜ ( s ) 2 d s + 2 t t + 1 γ ( s t ) f ( s + s n , Y ˜ ( s ) ) f ˜ ( s , Y ˜ ( s ) ) 2 d s
We can deduce from ( 4 ) , ( 6 ) that
t t + 1 γ ( s t ) D ( s + s n ) D ˜ ( s ) 2 d s 0
pointwise on R , as n . Similarly, we can deduce from ( 5 ) , ( 7 ) that
t t + 1 γ ( s t ) D ˜ ( s s n ) D ( s ) 2 d s 0
pointwise on R , as n . Thus, D ( t ) = f ( t , Y ( t ) ) is A S γ 2 ( R , L 2 ( P , H ) ) . □
Remark 4.
In the proof of Theorem 1, the similar techniques have been used in the study of diffusion processes in networks; for more details, please refer to the work [33], in which the authors investigate a logistic model, which is a dependent Markov chain and allows individual variation and time-dependent infection and recovery rates.
For the Poisson term, we need the following conditions: Assume L > 0 such that, for all t R and u , v L l o c 2 ( R , L 2 ( P , H ) , γ d s ) ,
t t + 1 V γ ( s t ) F ( s , u , x ) F ( s , v , x ) 2 ν ( d x ) d s L t t + 1 γ ( s t ) u v 2 d s
Theorem 2.
Suppose Y A S γ 2 ( R , L 2 ( P , H ) ) such that K = { Y ( t ) : t R ¯ } L 2 ( P , H ) is a compact subset, where { Y ( t ) : t R ¯ } denotes the closure of the set. If F A S γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) and satisfies ( 8 ) , then the function D : R × V L 2 ( P , H ) given by D ( t , x ) = F ( t , Y ( t ) , x ) is A S γ 2 ( R × V , L 2 ( P , H ) ) .
Proof. 
Please the proof of Theorem 2 in Appendix A.1. □

2.3. S γ 2 -Pseudo Almost Automorphy

Define the classes of functions:
P A P 0 ( R , L 2 ( P , H ) ) : = Y B C ( R , L 2 ( P , H ) ) : lim T 1 2 T T T Y ( t ) 2 d t = 0
P A P 0 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) : = f B C ( R × L 2 ( P , H ) , L 2 ( P , H ) ) : lim T 1 2 T T T f ( t , Y ) 2 d t = 0 , f ( · , Y ) is bounded for each Y L 2 ( P , H )
P A P 0 ( R × V , L 2 ( P , H ) ) : = lim T 1 2 T T T V J ( t , x ) 2 ν ( d x ) d t = 0 , w h e r e J B C ( R × V , L 2 ( P , H ) )
P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) : = F P A P 0 ( R × V , L 2 ( P , H ) ) : for any Y L 2 ( P , H )
Definition 13
([30]). A function Y C ( R , L 2 ( P , H ) ) is called PAA if it can be given by Y = x + z , where x A A ( R , L 2 ( P , H ) ) and z P A P 0 ( R , L 2 ( P , H ) ) . The notation P A A ( R , L 2 ( P , H ) ) denotes the collection of such functions.
Definition 14
([30]). A function f C ( R × L 2 ( P , H ) , L 2 ( P , H ) ) is called PAA if it can be written as f = l + m , where l A A ( R × L 2 ( P , H ) , L 2 ( P , H ) ) and m P A P 0 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) . The notation P A A ( R × L 2 ( P , H ) , L 2 ( P , H ) ) denotes the collection of such functions.
Definition 15.
A function F C ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) is called Poisson PAA if it can be given by F = h + ϕ , where h A A ( R × L 2 ( P , H ) × V , L 2 ( P , H ) and ϕ P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) . The notation P A A ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) denotes the collection of such functions.
Proposition 3
([30]). The space P A A ( R , L 2 ( P , H ) ) is a Banach space when equipped with the sup norm · .
Define the following collections:
P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) : = Y ( · ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) : lim T 1 2 T T T t t + 1 γ ( s t ) Y ( s ) 2 d s d t = 0 ,
P A P 0 ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) : = f ( · , Y ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) : lim T 1 2 T T T t t + 1 γ ( s t ) f ( s , Y ) 2 d s d t = 0 , f ( · , Y ) is bounded for each Y L 2 ( P , H ) ,
P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) : = J ( · , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) : lim T 1 2 T T T V t t + 1 γ ( s t ) J ( s , x ) 2 d s ν ( d x ) d t = 0 ,
P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) : = for any Y L 2 ( P , H ) , F P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) )
Definition 16
([5]). Let γ U . A function Y B S γ 2 ( R , L 2 ( P , H ) ) is called S γ 2 -PAA, if it can be given by Y = x + z , where x b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and z b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The notation P A A γ 2 ( R , L 2 ( P , H ) ) denotes the collection of such functions.
Remark 5.
By the definition, S γ 2 -PAA spaces are translation-invariant. Moreover, the decomposition of S γ 2 -PAA functions is unique.
Proposition 4
([5]). If Y P A A ( R , L 2 ( P , H ) ) , then Y P A A γ 2 ( R , L 2 ( P , H ) ) that is, P A A ( R , L 2 ( P , H ) ) P A A γ 2 ( R , L 2 ( P , H ) ) .
Proposition 5
([5]). Let γ U . The space P A A γ 2 ( R , L 2 ( P , H ) ) is a Banach space when equipped with the norm · S γ 2 .
Definition 17
([5]). Let γ U . A function f : R × L 2 ( P , H ) L 2 ( P , H ) , ( t , Y ) f ( t , Y ) with f ( · , Y ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each Y L 2 ( P , H ) , is called S γ 2 -PAA if there exist functions l , m : R × L 2 ( P , H ) L 2 ( P , H ) such that f = l + m where l b A A ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and m b P A P 0 ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The notation P A A γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) denotes the collection of all such functions.
Definition 18.
Let γ U . A function J : R × V L 2 ( P , H ) , ( t , x ) J ( t , x ) with J ( · , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each x V , is called Poisson S γ 2 -PAA, if there exist functions φ , ψ : R × V L 2 ( P , H ) such that J = φ + ψ where φ b A A ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and ψ b P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The notation P A A γ 2 ( R × V , L 2 ( P , H ) ) denotes the collection of such functions.
Definition 19.
Let γ U . A function F : R × L 2 ( P , H ) × V L 2 ( P , H ) , ( t , Y , x ) F ( t , Y , x ) with F ( · , Y , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) for each Y L 2 ( P , H ) , is called Poisson S γ 2 -PAA, if there exist functions h , ϕ : R × L 2 ( P , H ) × V L 2 ( P , H ) such that F = h + ϕ where h b A A ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and ϕ b P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The notation P A A γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) denotes the collection of such functions.
Remark 6.
Actually, Poisson generalized Stepanov-like PAA(Poisson S γ 2 -PAA) generalizes the concept of Poisson Stepanov-like almost automorphy [15], that is, if a stochastic process is Poisson Stepanov-like almost automorphy, then it is Poisson generalized Stepanov-like PAA, but the converse is not true, which means the function space becomes much bigger than ever before.
Proposition 6
([5]). Let f = l + m P A A γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) such that l b A A ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and also m b P A P 0 ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Assume that l satisfies ( 2 ) and m satisfies ( 3 ) . Furthermore, if Y = x + z P A A γ 2 ( R , L 2 ( P , H ) ) with x b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and z b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and also K = { x ( t ) : t R ¯ } is compact, where { · } ¯ denotes the closure of the set, then t f ( t , Y ( t ) ) belongs to P A A γ 2 ( R , L 2 ( P , H ) ) .
Theorem 3.
Let f = l + m P A A γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) such that its Bochner transform l b A A ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and also m b P A P 0 ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Assume that l and m satisfy ( 3 ) . Furthermore, if Y = x + z P A A γ 2 ( R , L 2 ( P , H ) ) with x b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and z b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and also K = { x ( t ) : t R ¯ } is compact, where { · } ¯ denotes the closure of the set, then t f ( t , Y ( t ) ) belongs to P A A γ 2 ( R , L 2 ( P , H ) ) .
Proof. 
We have
f ( t , Y ( t ) ) = l ( t , x ( t ) ) + f ( t , Y ( t ) ) l ( t , x ( t ) ) = l ( t , x ( t ) ) + f ( t , Y ( t ) ) f ( t , x ( t ) ) + m ( t , x ( t ) )
Denote by
Γ b ( · ) = f b ( · , Y b ( · ) = l b ( · , x b ( · ) ) + f b ( · , Y b ( · ) ) f b ( · , x b ( · ) ) + m b ( · , x b ( · ) )
Next, we shall show that Γ b ( · ) P A P ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) by several steps.
Step 1: we claim that l b ( · , x b ( · ) ) A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . In fact, we easily know that the function l satisfies ( H 1 ) and its Bochner transform l b A A ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , x b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) . Moreover, K = { x ( t ) : t R ¯ } is compact. Thus, by virtue of the Theorem 1, we have l b ( · , x b ( · ) ) A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) .
Step 2: On the other hand, we claim that φ b ( · ) = f b ( · , Y b ( · ) ) f b ( · , x b ( · ) ) P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Since l , m satisfies ( 3 ) , we obtain
0 1 γ ( s ) φ ( t + s ) 2 d s = t t + 1 γ ( s t ) φ ( s ) 2 d s = t t + 1 γ ( s t ) f ( s , Y ( s ) ) f ( s , x ( s ) ) 2 d s 2 t t + 1 γ ( s t ) l ( s , Y ( s ) ) l ( s , x ( s ) ) 2 d s 2 t t + 1 γ ( s t ) m ( s , Y ( s ) ) m ( s , x ( s ) ) 2 d s 4 L t t + 1 γ ( s t ) z ( s ) 2 d s
Thus, for any T > 0 ,
1 2 T T T 0 1 γ ( s ) φ ( t + s ) 2 d s d t 2 L T T T t t + 1 γ ( s t ) z ( s ) 2 d s d t
Since z b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , we can obtain
lim T 1 2 T T T 0 1 γ ( s ) φ ( t + s ) 2 d s d t = 0
which implies φ b ( · ) P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) .
Step 3: we also claim that m b ( · , x b ( · ) ) P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . There are finite open balls O k ( k = 1 , 2 , . . . , n ) with center x k K from the fact that K = { x ( t ) : t R ¯ } is compact. In addition, if the radius ε of O k ( k = 1 , 2 , . . . , n ) small enough, then { x ( t ) ; t R } k = 1 n O k , where B k = { s R ; x ( s ) O k } and R = k = 1 n B k . Suppose E 1 = B 1 , E k = B k j = 1 k 1 B j ( 2 j n ) ; then, E i E j = , when i j , 1 i , j n .
On the other hand, given the step function x ¯ : R L 2 ( P , H ) by x ¯ ( s ) = x k , s E k , k = 1 , 2 , . . . , n . Thus,
x ( s ) x ¯ ( s ) ε
for all s R . By replacing the variable in the integral, it holds that
t t + 1 γ ( s t ) m ( s , x ( s ) ) 2 d s 2 t t + 1 γ ( s t ) m ( s , x ( s ) ) m ( s , x ¯ ( s ) ) 2 d s + 2 t t + 1 γ ( s t ) m ( s , x ¯ ( s ) ) 2 d s 2 L t t + 1 γ ( s t ) x ( s ) x ¯ ( s ) 2 d s + 2 k = 1 n [ t , t + 1 ] E k γ ( s t ) m ( s , x k ) 2 d s 2 L γ 0 ε 2 + 2 k = 1 n [ t , t + 1 ] E k γ ( s t ) m ( s , x k ) 2 d s
Thus, for any T > 0 ,
1 2 T T T t t + 1 γ ( s t ) m ( s , x ( s ) ) 2 d s d t 2 L γ 0 ε 2 + 1 T T T k = 1 n [ t , t + 1 ] E k γ ( s t ) m ( s , x k ) 2 d s d t
Since the arbitrariness of ε and m b P A P 0 ( R × L 2 ( P , H ) , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , we can obtain
lim T 1 2 T T T t t + 1 γ ( s t ) m ( s , x ( s ) ) 2 d s d t = 0
which implies m b ( · , x b ( · ) ) P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The proof is complete. □
Theorem 4.
Let F = h + ϕ P A A γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) such that h b A A ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and ϕ b P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Assume that h and ϕ satisfy ( 3 ) . Furthermore, if Y = α + β P A A γ 2 ( R , L 2 ( P , H ) ) with α b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and β b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and such that K = { α ( t ) : t R ¯ } is compact, where { α ( t ) : t R ¯ } denotes the closure of the set, then ( t , x ) F ( t , Y ( t ) , x ) belongs to P A A γ 2 ( R × V , L 2 ( P , H ) ) .
Proof. 
Please see the proof of Theorem 4 in Appendix A.2. □

3. Main Results

In this section, we consider the following abstract model:
d Y ( t ) = A ( t ) Y ( t ) d t + f ( t , Y ( t ) ) d t + g ( t , Y ( t ) ) d W ( t ) + | x | V < 1 F ( t , Y ( t ) , x ) N ˜ ( d t , d x ) + | x | V 1 G ( t , Y ( t ) , x ) N ( d t , d x ) , t R
It supposes that
(i)
The coefficients in the above model satisfy that f : R × L 2 ( P , H ) L 2 ( P , H ) , g : R × L 2 ( P , H ) L ( V , L 2 ( P , H ) ) , F , G : R × L 2 ( P , H ) × V L 2 ( P , H ) ;
(ii)
W is a Brownian motion, N and N ˜ are Poisson random measure and compensated Poisson random measure, respectively.
(iii)
A ( t ) satisfies the “Acquistapace–Terrani” condition.
Definition 20.
Suppose U ( t , s ) : t s w i t h t , s R is a set of bounded linear operators on L 2 ( P , H ) , if
(i)
U ( s , s ) = Q , U ( t , s ) = U ( t , r ) U ( r , s ) for t r s and t , r , s R ;
(ii)
The strongly continuous mapping ( t , s ) U ( t , s ) { ( τ , σ ) R 2 : τ σ } .
Thus, U ( t , s ) is an evolution family.
Definition 21.
The mild solution of (9) is listed in the following:
Y ( t ) = t U ( t , s ) f ( s , Y ( s ) ) d s + t U ( t , s ) g ( s , Y ( s ) ) d W ( s ) + t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) , t R
where Y : R L 2 ( P , H ) is a continuous function.
Almost automorphy in distribution Let real H -valued functions f are Lipschitz continuous and equipped with the norms
f B L = f L + f , f L = sup x y | f ( x ) f ( y ) | x y , f = sup x H | f |
Then, define a metric in the following sense:
β ( μ , ν ) : = s u p { | f d μ f d ν | : f B L 1 } , μ , ν P ( H )
and assume P ( H ) to be the space of all Borel probability measure on H endowed with the β metric.
Definition 22
([12]). For a P ( H ) -valued almost automorphic mapping μ ˜ ( t ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
lim n β ( μ ( t + s n ) , μ ˜ ( t ) ) = 0 , lim n β ( μ ˜ ( t s n ) , μ ( t ) ) = 0
holds for each t R . Then, H -valued Y ( t ) with law μ ( t ) is called almost automorphy in distribution.
Remark 7
([12]). A square-mean automorphic function is necessarily almost automorphy in distribution from the fact that, for a sequence of random variables, L 2 converge implies convergence in distribution, but the converse is not true.
Definition 23.
An H -valued function Y ( t ) is called pseudo almost automorphy in distribution if it can be expressed as Y = x + z , where x is almost automorphy in distribution and z P A A ( R , L 2 ( P , H ) ) .
In order to study the asymptotic behavior of the solutions, the following hypotheses are needed: [ H f ] f P A A γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) C ( R × L 2 ( P , H ) , L 2 ( P , H ) ) , f satisfies the assumption of the Theorem 3, and
K f = sup s ( t , t + 1 ) t t + 1 γ ( s t ) f ( s , 0 ) 2 d s , t R
[ H g ] g P A A γ 2 ( R × L 2 ( P , H ) , L 2 ( P , H ) ) C ( R × L 2 ( P , H ) , L 2 ( P , H ) ) , g satisfies the assumption of the Theorem 3, and
K g = sup s ( t , t + 1 ) t t + 1 γ ( s t ) g ( s , 0 ) 2 d s , t R
[ H F ] F P A A γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) C ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) , F satisfies the assumption of the Theorem 4, and
K F = sup s ( t , t + 1 ) t t + 1 V γ ( s t ) F ( s , 0 , x ) 2 ν ( d x ) d s , t R
[ H G ] G P A A γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) C ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) , G satisfies the assumption of the Theorem 4, and
K G = sup s ( t , t + 1 ) t t + 1 V γ ( s t ) G ( s , 0 , x ) 2 ν ( d x ) d s , t R
[ H U ]
(i)
U ( t , s ) satisfies U ( t , s ) M e δ ( t s ) , where M , δ > 0 are constants.
(ii)
The mapping ( t , s ) U ( t , s ) x b A A ( T , L 2 ( P , H ) ) uniformly for x L 2 ( P , H ) .
Lemma 1.
Under assumptions ( H f , H U ) , then the integral operator Λ 1 defined by
Λ 1 Y ( t ) : = t U ( t , s ) f ( s , Y ( s ) ) d s
maps P A A ( R , L 2 ( P , H ) ) into P A A ( R , L 2 ( P , H ) ) .
Proof. 
Let Y P A A ( R , L 2 ( P , H ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . By Theorem 3, it holds that D 1 ( t ) : = f ( t , Y ( t ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . Now, let D 1 = l + m , where their Bochner transform l b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and m b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . For each k = 1 , 2 , . . . , the integral
Φ k ( t ) = k 1 k U ( t , t ξ ) D 1 ( t ξ ) d ξ = k 1 k U ( t , t ξ ) l ( t ξ ) d ξ + k 1 k U ( t , t ξ ) m ( t ξ ) d ξ
and set X k ( t ) : = k 1 k U ( t , t ξ ) l ( t ξ ) d ξ and Z k ( t ) : = k 1 k U ( t , t ξ ) m ( t ξ ) d ξ .
Let us show that X k A A ( R , L 2 ( P , H ) . For that, letting σ = t ξ , we obtain
X k ( t ) = t k t k + 1 U ( t , σ ) l ( σ ) d σ , t R
By virtue, the Cauchy–Schwarz inequality and ( H U ( i ) ) , we have
E X k ( t ) 2 = E t k t k + 1 U ( t , σ ) l ( σ ) d σ 2 t k t k + 1 U ( t , σ ) l ( σ ) d σ 2 t k t k + 1 M 2 e 2 δ ( t σ ) γ ( σ t + k ) 1 d σ · t k t k + 1 γ ( σ t + k ) l ( σ ) 2 d σ M 2 2 m 0 δ e 2 δ ( k 1 ) l S γ 2 2
Using the fact that
M 2 2 m 0 δ k = 1 e 2 δ ( k 1 ) <
We deduce that the series k = 1 X k ( t ) is uniformly convergent on R by the Weirstrass theorem. Furthermore,
X ( t ) : = t U ( t , σ ) l ( σ ) d σ = k = 1 X k ( t )
X ( t ) C ( R , L 2 ( P , H ) ) , and
E X ( t ) 2 = E k = 1 X k ( t ) 2 k = 1 1 k 2 k = 1 { k 2 E X k ( t ) 2 } M 2 2 m 0 δ l S γ 2 2 k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
We deduce that X ( t ) is bounded from the Weirstrass theorem. Here, it can be noted that a similar estimation has been done in the study of random system control processes [34], and this helps to motivate the methodology of the above estimation.
Since l A S γ 2 ( R , L 2 ( P , H ) ) and U ( t , s ) x b A A ( T , L 2 ( P , H ) ) , then, for functions U ˜ , l ˜ A S γ 2 ( R , L 2 ( P , H ) ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
lim n U ( t + s n , s + s n ) x U ˜ ( t , s ) x 2 = 0
lim n U ˜ ( t s n , s s n ) x U ( t , s ) x 2 = 0
and
lim n l ( t + s n ) l ˜ ( t ) S γ 2 2 = 0 , lim n l ˜ ( t s n ) l ( t ) S γ 2 2 = 0
Let
X k ˜ ( t ) : = k 1 k U ˜ ( t , t ξ ) l ˜ ( t ξ ) d ξ
Next, by the Cauchy–Schwarz inequality, it follows that
E X k ( t + s n ) X k ˜ ( t ) 2 = E k 1 k U ( t + s n , t + s n ξ ) l ( t + s n ξ ) U ˜ ( t , t ξ ) l ˜ ( t ξ ) d ξ 2 2 E k 1 k U ( t + s n , t + s n ξ ) [ l ( t + s n ξ ) l ˜ ( t ξ ) ] d ξ 2 + 2 E k 1 k [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] l ˜ ( t ξ ) d ξ 2 M 2 m 0 δ e 2 δ ( k 1 ) k 1 k γ ( ξ k + 1 ) l ( t + s n ξ ) l ˜ ( t ξ ) 2 d ξ + 2 k 1 k [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] l ˜ ( t ξ ) 2 d ξ
Now, from Lebesgue dominated convergence theorem and ( 10 ) , ( 12 ) , it holds that
X k ( t + s n ) X k ˜ ( t ) 2 0 , as n
Similarly, using ( 11 ) , ( 12 ) , we have
X k ˜ ( t s n ) X k ( t ) 2 0 , as n
Thus, each X k A A ( R , L 2 ( P , H ) for each k. Hence, X ( t ) A A ( R , L 2 ( P , H ) ) .
Let us show that Z k P A P 0 ( R , L 2 ( P , H ) ) . Using the Cauchy–Schwarz inequality, we can obtain
E Z k ( t ) 2 = E t k t k + 1 U ( t , σ ) m ( σ ) d σ 2 M 2 2 m 0 δ e 2 δ ( k 1 ) t k t k + 1 γ ( σ t + k ) m ( σ ) 2 d σ
Thus, for any T > 0 ,
1 2 T T T Z k ( t ) 2 d t M 2 4 T m 0 δ e 2 δ ( k 1 ) T T t k t k + 1 γ ( σ t + k ) m ( σ ) 2 d σ d t
Since m b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , then
lim T 1 2 T T T Z k ( t ) 2 d t = 0 ,
that is, Z k P A P 0 ( R , L 2 ( P , H ) ) . Furthermore,
Z ( t ) : = t U ( t , σ ) m ( σ ) d σ = k = 1 Z k ( t )
Z ( t ) C ( R , L 2 ( P , H ) ) , and
E Z ( t ) 2 = E k = 1 Z k ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E Z k ( t ) 2 }
Then,
lim T 1 2 T T T Z ( t ) 2 d t = 0
Consequently, the uniform limit Z ( t ) P A P 0 ( R , L 2 ( P , H ) ) . Thus, Λ 1 Y ( t ) = X ( t ) + Z ( t ) P A A ( R , L 2 ( P , H ) ) . □
Lemma 2.
Under assumptions ( H g , H U ) , then Λ 2 defined by
Λ 2 Y ( t ) : = t U ( t , s ) g ( s , Y ( s ) ) d W ( s )
maps P A A ( R , L 2 ( P , H ) ) into P A A ( R , L 2 ( P , H ) ) .
Proof. 
Let Y P A A ( R , L 2 ( P , H ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . By Theorem 3, D 2 ( t ) : = g ( t , Y ( t ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . Now, let D 2 = p + q , where its Bochner transform p b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and q b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Next,
Ψ k ( t ) = k 1 k U ( t , t ξ ) D 2 ( t ξ ) d W ( ξ ) = k 1 k U ( t , t ξ ) p ( t ξ ) d W ( ξ ) + k 1 k U ( t , t ξ ) q ( t ξ ) d W ( ξ )
and set V k ( t ) : = k 1 k U ( t , t ξ ) p ( t ξ ) d W ( ξ ) and W k ( t ) : = k 1 k U ( t , t ξ ) q ( t ξ ) d W ( ξ ) for each k = 1 , 2 , . . . .
Let us show that V k A A ( R , L 2 ( P , H ) . Assuming σ = t ξ , we obtain
V k ( t ) = t k t k + 1 U ( t , σ ) p ( σ ) d W ( σ ) , t R
By the mean value theorem of integrals and Itô’s isometry, we have
E V k ( t ) 2 = E t k t k + 1 U ( t , σ ) p ( σ ) d W ( σ ) 2 t k t k + 1 E U ( t , σ ) p ( σ ) 2 d σ M 2 m 0 e 2 δ ( t ε ) t k t k + 1 γ ( σ t + k ) p ( σ ) 2 d σ , ε [ t k , t k + 1 ] M 2 m 0 e 2 δ ( k 1 ) p S γ 2 2
Using the fact that
M 2 m 0 k = 1 e 2 δ ( k 1 ) < ,
We deduce the series k = 1 V k ( t ) is uniformly convergent on R by virtue of the Weirstrass theorem. Meanwhile,
V ( t ) : = t U ( t , σ ) p ( σ ) d W ( σ ) = k = 1 V k ( t )
V ( t ) C ( R , L 2 ( P , H ) ) , and
E V ( t ) 2 = E k = 1 V k ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E V k ( t ) 2 } M 2 m 0 p S γ 2 2 k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
We deduce that V ( t ) is bounded by the Weirstrass theorem.
Since p A S γ 2 ( R , L 2 ( P , H ) ) , then, for a function p ˜ A S γ 2 ( R , L 2 ( P , H ) ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
lim n p ( t + s n ) p ˜ ( t ) S γ 2 2 = 0 and lim n p ˜ ( t s n ) p ( t ) S γ 2 2 = 0
Let
V k ˜ ( t ) : = k 1 k U ˜ ( t , t ξ ) p ˜ ( t ξ ) d W ( ξ )
Thus, from the Itô’s isometry and the mean value theorem of integrals, it follows that
E V k ( t + s n ) V k ˜ ( t ) 2 = E k 1 k U ( t + s n , t + s n ξ ) p ( t + s n ξ ) U ˜ ( t , t ξ ) p ˜ ( t ξ ) d W ( ξ ) 2 2 E k 1 k U ( t + s n , t + s n ξ ) [ p ( t + s n ξ ) p ˜ ( t ξ ) ] d W ( ξ ) 2 + 2 E k 1 k [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] p ˜ ( t ξ ) d W ( ξ ) 2 2 M 2 m 0 e 2 δ ( k 1 ) k 1 k γ ( ξ k + 1 ) p ( t + s n ξ ) p ˜ ( t ξ ) 2 d ξ + 2 k 1 k [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] p ˜ ( t ξ ) 2 d ξ
Now, from the Lebesgue dominated convergence theorem and ( 10 ) , ( 13 ) , we have
V k ( t + s n ) V k ˜ ( t ) 2 0 , as n
Similarly, using ( 11 ) , ( 13 ) , it follows that
V k ˜ ( t s n ) V k ( t ) 2 0 , as n
Thus, each V k A A ( R , L 2 ( P , H ) for each k. Hence, V ( t ) A A ( R , L 2 ( P , H ) ) .
Let us show that W k P A P 0 ( R , L 2 ( P , H ) ) . Using the Itô’s isometry, we can obtain
E W k ( t ) 2 = E t k t k + 1 U ( t , σ ) q ( σ ) d W ( σ ) 2 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 γ ( σ t + k ) q ( σ ) 2 d σ
Thus, for any T > 0 ,
1 2 T T T W k ( t ) 2 d t M 2 2 T m 0 e 2 δ ( k 1 ) T T t k t k + 1 γ ( σ t + k ) q ( σ ) 2 d σ d t
Since q b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , then
lim T 1 2 T T T W k ( t ) 2 d t = 0 ,
that is, W k P A P 0 ( R , L 2 ( P , H ) ) . Furthermore,
W ( t ) : = t U ( t , σ ) q ( σ ) d W ( σ ) = k = 1 W k ( t )
W ( t ) C ( R , L 2 ( P , H ) ) ; then,
lim T 1 2 T T T W ( t ) 2 d t = 0
Consequently, the uniform limit W ( t ) P A P 0 ( R , L 2 ( P , H ) ) . Thus, Λ 2 Y ( t ) = V ( t ) + W ( t ) P A A ( R , L 2 ( P , H ) ) . □
Lemma 3.
Under assumptions ( H F , H U ) , then Λ 3 is defined by
Λ 3 Y ( t ) : = t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x )
maps P A A ( R , L 2 ( P , H ) ) into P A A ( R , L 2 ( P , H ) ) .
Proof. 
Let Y P A A ( R , L 2 ( P , H ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . By Theorem 4, it follows that D 3 ( t , x ) : = F ( t , Y ( t ) , x ) P A A γ 2 ( R × V , L 2 ( P , H ) ) . Now, let D 3 = h + ϕ , where h b A A ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and ϕ b P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Next,
Ω k ( t ) = k 1 k | x | V < 1 U ( t , t ξ ) D 3 ( t ξ , x ) N ˜ ( d ξ , d x ) = k 1 k | x | V < 1 U ( t , t ξ ) h ( t ξ , x ) N ˜ ( d ξ , d x ) + k 1 k | x | V < 1 U ( t , t ξ ) ϕ ( t ξ , x ) N ˜ ( d ξ , d x )
and set
T k ( t ) : = k 1 k | x | V < 1 U ( t , t ξ ) h ( t ξ , x ) N ˜ ( d ξ , d x )
and
Q k ( t ) : = k 1 k | x | V < 1 U ( t , t ξ ) ϕ ( t ξ , x ) N ˜ ( d ξ , d x )
Next, we prove T k A A ( R , L 2 ( P , H ) . Assuming σ = t ξ , we obtain
T k ( t ) = t k t k + 1 | x | V < 1 U ( t , σ ) h ( σ , x ) N ˜ ( d σ , d x ) , t R
By the mean value theorem of integrals and the Itô’s isometry, we have
E T k ( t ) 2 = E t k t k + 1 | x | V < 1 U ( t , σ ) h ( σ , x ) N ˜ ( d σ , d x ) 2 t k t k + 1 | x | V < 1 E U ( t , σ ) h ( σ , x ) 2 ν ( d x ) d σ M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V < 1 γ ( σ t + k ) h ( σ , x ) 2 ν ( d x ) d σ M 2 m 0 e 2 δ ( k 1 ) h S γ 2 2
Using the fact that
M 2 m 0 k = 1 e 2 δ ( k 1 ) < ,
We deduce that the series k = 1 T k ( t ) is uniformly convergent on R by the Weirstrass theorem. Meanwhile,
T ( t ) : = t | x | V < 1 U ( t , σ ) h ( σ , x ) N ˜ ( d σ , d x ) = k = 1 T k ( t )
T ( t ) C ( R , L 2 ( P , H ) ) , and
E T ( t ) 2 = E k = 1 T k ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E T k ( t ) 2 } M 2 m 0 h S γ 2 2 k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
We deduce T ( t ) is bounded by the Weirstrass theorem.
Since h A S γ 2 ( R × V , L 2 ( P , H ) ) , then, for a function h ˜ A S γ 2 ( R × V , L 2 ( P , H ) ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
0 1 V γ ( t ) h ( t + s n , x ) h ˜ ( t , x ) 2 ν ( d x ) d t 0 , as n
0 1 V γ ( t ) h ˜ ( t s n , x ) h ( t , x ) 2 ν ( d x ) d t 0 , as n
Let
T k ˜ ( t ) : = k 1 k | x | V < 1 U ˜ ( t , t ξ ) h ˜ ( t ξ , x ) N ˜ ( d ξ , d x )
Then, from the mean value theorem of integrals and the Itô’s isometry, we have
E T k ( t + s n ) T k ˜ ( t ) 2 = E k 1 k | x | V < 1 U ( t + s n , t + s n ξ ) h ( t + s n ξ , x ) U ˜ ( t , t ξ ) h ˜ ( t ξ , x ) N ˜ ( d ξ , d x ) 2 2 E k 1 k | x | V < 1 U ( t + s n , t + s n ξ ) [ h ( t + s n ξ , x ) h ˜ ( t ξ , x ) ] N ˜ ( d ξ , d x ) 2 + 2 E k 1 k | x | V < 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] h ˜ ( t ξ , x ) N ˜ ( d ξ , d x ) 2 2 M 2 m 0 e 2 δ ( k 1 ) k 1 k | x | V < 1 γ ( ξ k + 1 ) h ( t + s n ξ , x ) h ˜ ( t ξ , x ) 2 ν ( d x ) d ξ + 2 k 1 k | x | V < 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] h ˜ ( t ξ , x ) 2 ν ( d x ) d ξ
Now, by the Lebesgue dominated convergence theorem and ( 10 ) , ( 14 ) , we have
T k ( t + s n ) T k ˜ ( t ) 2 0 , as n
Similarly, using ( 11 ) , ( 15 ) , we have
T k ˜ ( t s n ) T k ( t ) 2 0 , as n
Thus, each T k A A ( R , L 2 ( P , H ) for each k. Hence, T ( t ) A A ( R , L 2 ( P , H ) .
Let us show that Q k P A P 0 ( R , L 2 ( P , H ) ) . Using the Itô’s isometry, we can obtain
E Q k ( t ) 2 = E t k t k + 1 | x | V < 1 U ( t , σ ) ϕ ( σ , x ) N ˜ ( d σ , d x ) 2 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V < 1 γ ( σ t + k ) ϕ ( σ , x ) 2 ν ( d x ) d σ
Thus, for any T > 0 ,
1 2 T T T Q k ( t ) 2 d t M 2 2 T m 0 e 2 δ ( k 1 ) T T t k t k + 1 | x | V < 1 γ ( σ t + k ) ϕ ( σ , x ) 2 ν ( d x ) d σ d t
Since ϕ b P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , then
lim T 1 2 T T T Q k ( t ) 2 d t = 0 ,
that is, Q k P A P 0 ( R × , L 2 ( P , H ) ) . Furthermore,
Q ( t ) : = t | x | V < 1 U ( t , σ ) ϕ ( σ , x ) N ˜ ( d σ , d x ) = k = 1 Q k ( t )
Q ( t ) C ( R , L 2 ( P , H ) ) ; then,
lim T 1 2 T T T Q ( t ) 2 d t = 0
Consequently, the uniform limit Q ( t ) P A P 0 ( R , L 2 ( P , H ) ) . Thus, Λ 3 Y ( t ) = T ( t ) + Q ( t ) P A A ( R , L 2 ( P , H ) ) . □
Lemma 4.
Under assumptions ( H G , H U ) , then Λ 4 defined by
Λ 4 Y ( t ) : = t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x )
maps P A A ( R , L 2 ( P , H ) ) into P A A ( R , L 2 ( P , H ) ) .
Proof. 
Let Y P A A ( R , L 2 ( P , H ) ) P A A γ 2 ( R , L 2 ( P , H ) ) . By Theorem 4, D 4 ( t , x ) : = G ( t , Y ( t ) , x ) P A A γ 2 ( R × V , L 2 ( P , H ) ) . Now, let D 4 = α + β , where α b A A ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) and β b P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Next,
Γ k ( t ) = k 1 k | x | V 1 U ( t , t ξ ) D 4 ( t ξ , x ) N ( d ξ , d x ) = k 1 k | x | V 1 U ( t , t ξ ) α ( t ξ , x ) N ( d ξ , d x ) + k 1 k | x | V 1 U ( t , t ξ ) β ( t ξ , x ) N ( d ξ , d x )
and set
S k ( t ) : = k 1 k | x | V 1 U ( t , t ξ ) α ( t ξ , x ) N ( d ξ , d x )
and
O k ( t ) : = k 1 k | x | V 1 U ( t , t ξ ) β ( t ξ , x ) N ( d ξ , d x )
Let us show that S k A A ( R , L 2 ( P , H ) . Assuming σ = t ξ , we obtain
S k ( t ) = t k t k + 1 | x | V 1 U ( t , σ ) α ( σ , x ) N ( d σ , d x ) , t R
By Itô’s isometry and Cauchy–Schwarz inequality, we have
E S k ( t ) 2 = E t k t k + 1 | x | V 1 U ( t , σ ) α ( σ , x ) N ( d σ , d x ) 2 2 E t k t k + 1 | x | V 1 U ( t , σ ) α ( σ , x ) N ˜ ( d σ , d x ) 2 + 2 E t k t k + 1 | x | V 1 U ( t , σ ) α ( σ , x ) ν ( d x ) d σ 2 M 2 m 0 ( 2 + b δ ) e 2 δ ( k 1 ) α S γ 2 2
From
M 2 m 0 ( 2 + b δ ) k = 1 e 2 δ ( k 1 ) < ,
We deduce that the series k = 1 S k ( t ) is uniformly convergent on R by the Weirstrass theorem. Moreover,
S ( t ) : = t | x | V 1 U ( t , σ ) α ( σ , x ) N ( d σ , d x ) = k = 1 S k ( t )
S ( t ) C ( R , L 2 ( P , H ) ) , and
E S ( t ) 2 = E k = 1 S k ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E S k ( t ) 2 } M 2 m 0 ( 2 + b δ ) α S γ 2 2 k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
We deduce that S ( t ) is bounded, by the Weirstrass theorem.
Next, since α A S γ 2 ( R × V , L 2 ( P , H ) ) , then, for a function α ˜ A S γ 2 ( R × V , L 2 ( P , H ) ) and every sequence of real numbers ( s n ) n N , there exists a subsequence ( s n ) n N such that
0 1 V γ ( t ) α ( t + s n , x ) α ˜ ( t , x ) 2 ν ( d x ) d t 0 , as n
0 1 V γ ( t ) α ˜ ( t s n , x ) α ( t , x ) 2 ν ( d x ) d t 0 , as n
Let
S k ˜ ( t ) : = k 1 k | x | V 1 U ˜ ( t , t ξ ) α ˜ ( t ξ , x ) N ( d ξ , d x )
Then, by Cauchy–Schwartz inequality and Ito isometry, from N ˜ ( t , B ) = N ( t , B ) t ν ( B ) , it follows that
E S k ( t + s n ) S k ˜ ( t ) 2 = E k 1 k | x | V 1 U ( t + s n , t + s n ξ ) α ( t + s n ξ , x ) U ˜ ( t , t ξ ) α ˜ ( t ξ , x ) N ( d ξ , d x ) 2 2 E k 1 k | x | V 1 U ( t + s n , t + s n ξ ) [ α ( t + s n ξ , x ) α ˜ ( t ξ , x ) ] N ( d ξ , d x ) 2 + 2 E k 1 k | x | V 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] α ˜ ( t ξ , x ) N ( d ξ , d x ) 2 4 E k 1 k | x | V 1 U ( t + s n , t + s n ξ ) [ α ( t + s n ξ , x ) α ˜ ( t ξ , x ) ] N ˜ ( d ξ , d x ) 2 + 4 E k 1 k | x | V 1 U ( t + s n , t + s n ξ ) [ α ( t + s n ξ , x ) α ˜ ( t ξ , x ) ] ν ( d x ) d ξ 2 + 4 E k 1 k | x | V 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] α ˜ ( t ξ , x ) N ˜ ( d ξ , d x ) 2 + 4 E k 1 k | x | V 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] α ˜ ( t ξ , x ) ν ( d x ) d ξ 2 2 M 2 m 0 ( 2 + b δ ) e 2 δ ( k 1 ) k 1 k | x | V 1 γ ( ξ k + 1 ) α ( t + s n ξ , x ) α ˜ ( t ξ , x ) 2 ν ( d x ) d ξ + 4 ( 1 + b ) k 1 k | x | V 1 [ U ( t + s n , t + s n ξ ) U ˜ ( t , t ξ ) ] α ˜ ( t ξ , x ) 2 ν ( d x ) d ξ
Now, by the Lebesgue dominated convergence theorem and ( 10 ) , ( 16 ) , we have
S k ( t + s n ) S k ˜ ( t ) 2 0 , as n
Similarly, using ( 11 ) , ( 17 ) , we have
S k ˜ ( t s n ) S k ( t ) 2 0 , as n
Thus, each S k A A ( R , L 2 ( P , H ) for each k. Hence, S ( t ) A A ( R , L 2 ( P , H ) . Next, we prove O k P A P 0 ( R , L 2 ( P , H ) ) . Thus,
E O k ( t ) 2 = E t k t k + 1 | x | V 1 U ( t , σ ) β ( σ , x ) N ( d σ , d x ) 2 2 E t k t k + 1 | x | V 1 U ( t , σ ) β ( σ , x ) N ˜ ( d σ , d x ) 2 + 2 E t k t k + 1 | x | V 1 U ( t , σ ) β ( σ , x ) ν ( d x ) d σ 2 M 2 m 0 ( 2 + b δ ) e 2 δ ( k 1 ) t k t k + 1 | x | V 1 γ ( σ t + k ) β ( σ , x ) 2 ν ( d x ) d σ
Thus, for any T > 0 ,
1 2 T T T O k ( t ) 2 d t M 2 2 T m 0 ( 2 + b δ ) e 2 δ ( k 1 ) T T t k t k + 1 | x | V 1 γ ( σ t + k ) β ( σ , x ) 2 ν ( d x ) d σ d t
Since β b P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , then
lim T 1 2 T T T O k ( t ) 2 d t = 0
that is, O k P A P 0 ( R × , L 2 ( P , H ) ) . Furthermore,
O ( t ) : = t | x | V 1 U ( t , σ ) β ( σ , x ) N ( d σ , d x ) = k = 1 O k ( t )
O ( t ) C ( R , L 2 ( P , H ) ) , then
lim T 1 2 T T T O ( t ) 2 d t = 0
Consequently, the uniform limit O ( t ) P A P 0 ( R , L 2 ( P , H ) ) . Thus, Λ 4 Y ( t ) = S ( t ) + O ( t ) P A A ( R , L 2 ( P , H ) ) . □
Theorem 5.
Supposing that the assumptions ( H f , H g , H F , H G , H U ) hold, then Equation (9) has at least one PAA solution in distribution, if
K : = 4 M 2 L γ 0 m 0 ( 1 δ + 2 ) k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } < 1
Proof. 
For any Y ( t ) P A A ( R , L 2 ( P , H ) ) , define Φ
Φ Y ( t ) : = t U ( t , s ) f ( s , Y ( s ) ) d s + t U ( t , s ) g ( s , Y ( s ) ) d W ( s ) + t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) = Λ 1 Y ( t ) + Λ 2 Y ( t ) + Λ 3 Y ( t ) + Λ 4 Y ( t )
for each t R . By virtue of Lemma 1–4, we deduce that Φ : P A A ( R , L 2 ( P , H ) ) P A A ( R , L 2 ( P , H ) ) is continuous and well-defined.
Next, we shall use the Krasnoselskii–Schaefer-type fixed point theorem [35] to verify the existence of solutions. Consider the space B : = { Y ( t ) P A A ( R , L 2 ( P , H ) ) } that is the operator: Φ : B B . Now, we decompose Φ as Φ 1 + Φ 2 where
Φ 1 Y ( t ) = t U ( t , s ) f ( s , Y ( s ) ) d s + t U ( t , s ) g ( s , Y ( s ) ) d W ( s ) , t R
Φ 2 Y ( t ) = t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) , t R
In order to obtain the main results, we will verify that Φ 1 is a contraction and Φ 2 is a complete operator. For better readability, we prove it step by step.
Step 1: Φ 1 is a contraction on B . Consider for each k = 1 , 2 , . . . , the integral
Φ 1 k Y ( t ) = t k t k + 1 U ( t , s ) f ( s , Y ( s ) ) d s + t k t k + 1 U ( t , s ) g ( s , Y ( s ) ) d W ( s )
Since χ = ζ + ξ P A A γ 2 ( R × L 2 ( P , H , L 2 ( P , H ) ) (where χ = f or g), and χ satisfies [ H χ ] , for all u , v L l o c 2 ( R , L 2 ( P , H , γ d s ) and t R , we have
t k t k + 1 γ ( s t + k ) χ ( s , u ) χ ( s , v ) 2 d s 2 t k t k + 1 γ ( s t + k ) ζ ( s , u ) ζ ( s , v ) 2 d s + 2 t k t k + 1 γ ( s t + k ) ξ ( s , u ) ξ ( s , v ) 2 d s 4 L t k t k + 1 γ ( s t + k ) u v 2 d s
Let t R , Y 1 , Y 2 B . From Itô’s isometry, Cauchy–Schwarz inequality, and (18), we have
E Φ 1 k Y 1 ( t ) Φ 1 k Y 2 ( t ) 2 = E t k t k + 1 U ( t , s ) [ f ( s , Y 1 ( s ) ) f ( s , Y 2 ( s ) ) ] d s + t k t k + 1 U ( t , s ) [ g ( s , Y 1 ( s ) ) g ( s , Y 2 ( s ) ) ] d W ( s ) 2 2 E t k t k + 1 U ( t , s ) [ f ( s , Y 1 ( s ) ) f ( s , Y 2 ( s ) ) ] d s 2 + 2 E t k t k + 1 U ( t , s ) [ g ( s , Y 1 ( s ) ) g ( s , Y 2 ( s ) ) ] d W ( s ) 2 M 2 m 0 δ e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) f ( s , Y 1 ( s ) ) f ( s , Y 2 ( s ) ) 2 d s + 2 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) g ( s , Y 1 ( s ) ) g ( s , Y 2 ( s ) ) 2 d s 4 M 2 L m 0 ( 1 δ + 2 ) e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) Y 1 ( s ) Y 2 ( s ) 2 d s K e 2 δ ( k 1 ) Y 1 ( σ ) Y 2 ( σ ) 2 , σ [ t k , t k + 1 ]
where K = 4 M 2 L γ 0 m 0 ( 1 δ + 2 ) . Using the Cauchy–Schwarz inequality and the mean value theorem of integrals, it follows that
E Φ 1 Y 1 ( t ) Φ 1 Y 2 ( t ) 2 = E k = 1 1 k · k [ Φ 1 k Y 1 ( t ) Φ 1 k Y 2 ( t ) ] 2 k = 1 1 k 2 · k = 1 { k 2 E Φ 1 k Y 1 ( t ) Φ 1 k Y 2 ( t ) 2 } K k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) Y 1 ( σ ) Y 2 ( σ ) 2 } K Y 1 ( ε ) Y 2 ( ε ) 2 , ε R
where K < 1 . Thus, Φ 1 is a contraction on B .
Step 2: Φ 2 : B B is continuous. For each k = 1 , 2 , . . . , the integral
Φ 2 k Y ( t ) = t k t k + 1 | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x )
Since Υ = Σ + Δ P A A γ 2 ( R × L 2 ( P , H × V , L 2 ( P , H ) ) (where Υ = F or G), and Υ satisfies [ H Υ ] , for all u , v L l o c 2 ( R , L 2 ( P , H , γ d s ) and t R , it follows that
t k t k + 1 V γ ( s t + k ) Υ ( s , u , x ) Υ ( s , v , x ) 2 ν ( d x ) d s 2 t k t k + 1 V γ ( s t + k ) Σ ( s , u , x ) Σ ( s , v , x ) 2 ν ( d x ) d s + 2 t k t k + 1 V γ ( s t + k ) Δ ( s , u , x ) Δ ( s , v , x ) 2 ν ( d x ) d s 4 L t k t k + 1 γ ( s t + k ) u v 2 d s
Let { Y ( n ) } with Y ( n ) Y ( as n ) in B . From Itô’s isometry, Cauchy–Schwarz inequality, and (19), we have
E Φ 2 k Y ( n ) ( t ) Φ 2 k Y ( t ) 2 = E t k t k + 1 | x | V < 1 U ( t , s ) [ F ( s , Y ( n ) ( s ) , x ) F ( s , Y ( s ) , x ) ] N ˜ ( d s , d x ) + t k t k + 1 | x | V 1 U ( t , s ) [ G ( s , Y ( n ) ( s ) , x ) G ( s , Y ( s ) , x ) ] N ( d s , d x ) 2 2 E t k t k + 1 | x | V < 1 U ( t , s ) [ F ( s , Y ( n ) ( s ) , x ) F ( s , Y ( s ) , x ) ] N ˜ ( d s , d x ) 2 + 4 E t k t k + 1 | x | V 1 U ( t , s ) [ G ( s , Y ( n ) ( s ) , x ) G ( s , Y ( s ) , x ) ] N ˜ ( d s , d x ) 2 + 4 E t k t k + 1 | x | V 1 U ( t , s ) [ G ( s , Y ( n ) ( s ) , x ) G ( s , Y ( s ) , x ) ] ν ( d x ) d s 2 2 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V < 1 γ ( s t + k ) F ( s , Y ( n ) ( s ) , x ) F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 4 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V 1 γ ( s t + k ) G ( s , Y ( n ) ( s ) , x ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 2 M 2 b m 0 δ e 2 δ ( k 1 ) t k t k + 1 | x | V 1 γ ( s t + k ) G ( s , Y ( n ) ( s ) , x ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s 8 M 2 L m 0 ( 3 + b δ ) e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) Y ( n ) ( s ) Y ( s ) 2 d s
Thus,
Φ 2 k Y ( n ) ( t ) Φ 2 k Y ( t ) 2 0 , as Y ( n ) Y ( as n )
Then,
E Φ 2 Y ( n ) ( t ) Φ 2 Y ( t ) 2 = E k = 1 1 k · k [ Φ 2 k Y ( n ) ( t ) Φ 2 k Y ( t ) ] 2 k = 1 1 k 2 · k = 1 { k 2 E Φ 2 k Y ( n ) ( t ) Φ 2 k Y ( t ) 2 }
Then,
Φ 2 Y ( n ) ( t ) Φ 2 Y ( t ) 2 0 , as Y ( n ) Y ( as n )
Thus, Φ 2 : B B is continuous.
Step 3: Φ 2 maps bounded sets into bounded sets in B . By the formula (19), we can obtain
t k t k + 1 V γ ( s t + k ) Υ ( s , Y ( s ) , x ) 2 ν ( d x ) d s 2 t k t k + 1 V γ ( s t + k ) Υ ( s , Y ( s ) , x ) Υ ( s , 0 , x ) 2 ν ( d x ) d s + 2 t k t k + 1 V γ ( s t + k ) Υ ( s , 0 , x ) 2 ν ( d x ) d s 8 L Y S γ 2 2 + 2 K Υ
Let B r : = { Y ( t ) : Y ( t ) 2 r , Y ( t ) B } . For each Y ( t ) B r , by Itô’s isometry, Cauchy–Schwarz inequality, and (20), we have
E Φ 2 k Y ( t ) 2 = E t k t k + 1 | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) 2 2 E t k t k + 1 | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 4 E t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 4 E t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) ν ( d x ) d s 2 2 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V < 1 γ ( s t + k ) F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 2 M 2 m 0 ( 2 + b δ ) e 2 δ ( k 1 ) t k t k + 1 | x | V 1 γ ( s t + k ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s { C 1 ( M , L , m 0 , b , δ ) Y S γ 2 2 + C 2 ( M , L , m 0 , b , δ , K F , K G ) } e 2 δ ( k 1 )
Then, there exists a uniformly constant M * (not about k), such that
E Φ 2 Y ( t ) 2 = E k = 1 1 k · k Φ 2 k Y ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E Φ 2 k Y ( t ) 2 } M * k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
Step 4: Φ 2 maps bounded sets into equicontinuous sets of B . For each Y B r , t 2 t 1 R , by the Itô’s isometry, Cauchy–Schwarz inequality, we have
E Φ 2 Y ( t 2 ) Φ 2 Y ( t 1 ) 2 = E t 1 | x | V < 1 [ U ( t 1 , s ) U ( t 2 , s ) ] F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t 1 t 2 | x | V < 1 U ( t 2 , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t 1 | x | V 1 [ U ( t 1 , s ) U ( t 2 , s ) ] G ( s , Y ( s ) , x ) N ( d s , d x ) + t 1 t 2 | x | V 1 U ( t 2 , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) 2 3 E Θ 2 + 3 E t 1 t 2 | x | V < 1 U ( t 2 , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 6 E t 1 t 2 | x | V 1 U ( t 2 , s ) G ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 6 E t 1 t 2 | x | V 1 U ( t 2 , s ) G ( s , Y ( s ) , x ) ν ( d x ) d s 2 3 k = 1 1 k 2 · k = 1 { k 2 E Θ k 2 } + 3 M 2 m 0 t 1 t 2 | x | V < 1 γ ( s t 1 ) F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 3 M 2 m 0 ( 2 + b δ ) t 1 t 2 | x | V 1 γ ( s t 1 ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s
where
Θ = t 1 | x | V < 1 [ U ( t 1 , s ) U ( t 2 , s ) ] F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t 1 | x | V 1 [ U ( t 1 , s ) U ( t 2 , s ) ] G ( s , Y ( s ) , x ) N ( d s , d x ) = k = 1 Θ k
and
Θ k = t 1 k t 1 k + 1 | x | V < 1 [ U ( t 1 , s ) U ( t 2 , s ) ] F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t 1 k t 1 k + 1 | x | V 1 [ U ( t 1 , s ) U ( t 2 , s ) ] G ( s , Y ( s ) , x ) N ( d s , d x )
By Itô’s isometry, Cauchy–Schwarz inequality, we have
E Θ k 2 2 E t 1 k t 1 k + 1 | x | V < 1 [ U ( t 1 , s ) U ( t 2 , s ) ] F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 4 E t 1 k t 1 k + 1 | x | V 1 [ U ( t 1 , s ) U ( t 2 , s ) ] G ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 4 b E t 1 k t 1 k + 1 | x | V 1 [ U ( t 1 , s ) U ( t 2 , s ) ] G ( s , Y ( s ) , x ) 2 ν ( d x ) d s
Since U ( t , s ) is strongly continuous, so U ( t 1 , s ) U ( t 2 , s ) 2 0 , as t 1 t 2 , then Θ k 2 0 . Hence, Φ 2 Y ( t 2 ) Φ 2 Y ( t 1 ) 2 0 , as t 1 t 2 . Thus, Φ 2 maps bounded sets into equicontinuous sets of B .
Step 5: Φ 2 maps bounded sets into a relatively compact set in B . Define an operator Φ 2 ε on B r by
Φ 2 ε Y ( t ) : = t ε | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t ε | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x )
For each Y ( t ) B r , it follows that
E Φ 2 Y ( t ) Φ 2 ε Y ( t ) 2 = E t ε t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t ε t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) 2 2 E t ε t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 4 E t ε t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 4 E t ε t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) ν ( d x ) d s 2 2 M 2 m 0 t ε t | x | V < 1 γ ( s t + ε ) F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 2 M 2 m 0 ( 2 + b δ ) t ε t | x | V 1 γ ( s t + ε ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s
Then,
Φ 2 Y ( t ) Φ 2 ε Y ( t ) 2 0 , as ε 0
Thus, Φ 2 maps bounded sets into a relatively compact set in B .
Step 6: We shall show that the set
G = { Y B : λ Φ 1 ( Y λ ) + λ Φ 2 ( Y ) = Y , for some λ ( 0 , 1 ) }
is bounded on t R . To do this, from [35], consider the following equation:
Y ( t ) = λ Φ Y ( t ) , 0 < λ < 1
Next, we give a priori estimate. By the formula (18), we can obtain
t k t k + 1 γ ( s t + k ) χ ( s , Y ( s ) ) 2 d s 2 t k t k + 1 γ ( s t + k ) χ ( s , Y ( s ) ) χ ( s , 0 ) 2 d s + 2 t k t k + 1 γ ( s t + k ) χ ( s , 0 ) 2 d s 8 L Y S γ 2 2 + 2 K χ
Thus,
E Φ k Y ( t ) 2 = E t k t k + 1 U ( t , s ) f ( s , Y ( s ) ) d s + t k t k + 1 U ( t , s ) g ( s , Y ( s ) ) d W ( s ) + t k t k + 1 | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) 2 4 E t k t k + 1 U ( t , s ) f ( s , Y ( s ) ) d s 2 + 4 E t k t k + 1 U ( t , s ) g ( s , Y ( s ) ) d W ( s ) 2 + 4 E t k t k + 1 | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 8 E t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ˜ ( d s , d x ) 2 + 8 E t k t k + 1 | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) ν ( d x ) d s 2 2 M 2 m 0 δ e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) f ( s , Y ( s ) ) 2 d s + 4 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 γ ( s t + k ) g ( s , Y ( s ) ) 2 d s + 4 M 2 m 0 e 2 δ ( k 1 ) t k t k + 1 | x | V < 1 γ ( s t + k ) F ( s , Y ( s ) , x ) 2 ν ( d x ) d s + 4 M 2 m 0 ( 2 + b δ ) e 2 δ ( k 1 ) t k t k + 1 | x | V 1 γ ( s t + k ) G ( s , Y ( s ) , x ) 2 ν ( d x ) d s { C 1 ( M , L , m 0 , b , δ ) Y S γ 2 2 + C 2 ( M , L , m 0 , b , δ , K f , K g , K F , K G ) } e 2 δ ( k 1 )
Then, there exists a uniformly constant M * (not about k), such that
E Y ( t ) 2 E Φ Y ( t ) 2 k = 1 1 k 2 · k = 1 { k 2 E Φ k Y ( t ) 2 } M * k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } <
Thus, this implies that G is bounded. Consequently, by the Krasnoselskii–Schaefer-type fixed point theorem, Φ has a fixed point Y P A A ( R , L 2 ( P , H ) ) . From Remark 5 and the similar approach in ([6], Theorem 4.1), Y is necessarily pseudo almost automorphy in distribution. □

4. Optimal Control Results

Let K be a reflexive Banach space and the control u is K -valued. The multi-valued map U : [ 0 , T ] 2 K is graph measurable, and U ( · ) Ω is a bounded set in K and has bounded, closed, and convex values. Let the admissible set U a d : = { u ( · ) L 2 ( Ω ) : u ( t ) U ( t ) , a . e . } . Obviously, U a d 0 , and U a d L 2 ( [ 0 , T ] , K ) is bounded, closed, and convex. For the stochastic controlled systems:
d Y ( t ) = A ( t ) Y ( t ) d t + f ( t , Y ( t ) ) d t + B ( t ) u ( t ) d t + g ( t , Y ( t ) ) d W ( t ) + | x | V < 1 F ( t , Y ( t ) , x ) N ˜ ( d t , d x ) + | x | V 1 G ( t , Y ( t ) , x ) N ( d t , d x ) , t [ 0 , T ]
By Definition 21, for each u U a d , the solution of the Equation (22) is in the following sense:
Y ( t ) = 0 t U ( t , s ) f ( s , Y ( s ) ) d s + 0 t U ( t , s ) B ( s ) u ( s ) d s + 0 t U ( t , s ) g ( s , Y ( s ) ) d W ( s ) + 0 t | x | V < 1 U ( t , s ) F ( s , Y ( s ) , x ) N ˜ ( d s , d x ) + 0 t | x | V 1 U ( t , s ) G ( s , Y ( s ) , x ) N ( d s , d x ) , t [ 0 , T ]
Let Y u denote the mild solution of Equation (22). Next, the following problem will be investigated:
Problem 1.
( P ) Find an optimal pair ( Y 0 , u 0 ) B × U a d such that J ( Y 0 , u 0 ) J ( Y u , u ) , for all u U a d where
J ( Y u , u ) = E 0 T L ( t , Y u ( t ) , u ( t ) ) d t
In order to study the Problem 1, the following hypotheses are needed: [ H L ]
(i)
The function L : [ 0 , T ] × L 2 ( P , H ) × K R { } is Borel measurable;
(ii)
For almost all t [ 0 , T ] , L ( t , · , · ) is sequentially lower semicontinuous on L 2 ( P , H ) × K ;
(iii)
For almost all t [ 0 , T ] , L ( t , Y , · ) is convex on K for each Y L 2 ( P , H ) ;
(iv)
There exists a 0 , b > 0 , c is nonegative and c L 1 ( [ 0 , T ] , R ) such that
L ( t , Y , u ) c ( t ) + a Y L 2 ( P , H ) + b u K 2
Theorem 6.
Equation (22) has an optimal control pair, if the hypotheses ( H L ) and Theorem 5 hold; meanwhile, B is a strongly continuous operator.
Proof. 
Next, we shall minimize the cost function J ( Y , u ) . In particular, the results are obvious if i n f { J ( Y , u ) | u U a d } = + . Then, assume that i n f { J ( Y , u ) | u U a d } = κ < + , using the hypothesis ( H L ( i v ) ) , we can obtain κ > .
Then, there exists a minimizing sequence of feasible pair { ( Y n , u n ) } A a d by infimum, (where A a d = { ( Y , u ) | Y is a solution of Equation (22) corresponding to u U a d } ), such that J ( Y n , u n ) κ as n + . Suppose U a d is a bounded subset of the separable reflexive Banach space L 2 ( [ 0 , T ] , K ) then { u n } U a d , there exists a subsequence u n and u 0 L 2 ( [ 0 , T ] , K ) such that u n w u 0 . Furthermore, by Marzur lemma, u 0 U a d and U a d is also closed and convex.
Assume that Y n is the mild solution of Equation (22) corresponding to u n and
Y n ( t ) = 0 t U ( t , s ) f ( s , Y n ( s ) ) d s + 0 t U ( t , s ) B ( s ) u n ( s ) d s + 0 t U ( t , s ) g ( s , Y n ( s ) ) d W ( s ) + 0 t | x | V < 1 U ( t , s ) F ( s , Y n ( s ) , x ) N ˜ ( d s , d x ) + 0 t | x | V 1 U ( t , s ) G ( s , Y n ( s ) , x ) N ( d s , d x ) , t [ 0 , T ]
Similarly,
Y 0 ( t ) = 0 t U ( t , s ) f ( s , Y 0 ( s ) ) d s + 0 t U ( t , s ) B ( s ) u 0 ( s ) d s + 0 t U ( t , s ) g ( s , Y 0 ( s ) ) d W ( s ) + 0 t | x | V < 1 U ( t , s ) F ( s , Y 0 ( s ) , x ) N ˜ ( d s , d x ) + 0 t | x | V 1 U ( t , s ) G ( s , Y 0 ( s ) , x ) N ( d s , d x ) , t [ 0 , T ]
Using the Cauchy–Schwarz inequality and the Itô’s isometry, we have
E Π 2 = E t k t k 1 U ( t , s ) [ f ( s , Y n ( s ) ) f ( s , Y 0 ( s ) ) ] d s + t k t k 1 U ( t , s ) [ g ( s , Y n ( s ) ) g ( s , Y n ( s ) ) ] d W ( s ) + t k t k 1 | x | V < 1 U ( t , s ) [ F ( s , Y n ( s ) , x ) F ( s , Y n ( s ) , x ) ] N ˜ ( d s , d x ) + t k t k 1 | x | V 1 U ( t , s ) [ G ( s , Y n ( s ) , x ) G ( s , Y n ( s ) , x ) ] N ( d s , d x ) 2 4 E t k t k 1 U ( t , s ) [ f ( s , Y n ( s ) ) f ( s , Y 0 ( s ) ) ] d s 2 + 4 E t k t k 1 U ( t , s ) [ g ( s , Y n ( s ) ) g ( s , Y n ( s ) ) ] d W ( s ) 2 + 4 E t k t k 1 | x | V < 1 U ( t , s ) [ F ( s , Y n ( s ) , x ) F ( s , Y n ( s ) , x ) ] N ˜ ( d s , d x ) 2 + 4 E t k t k 1 | x | V 1 U ( t , s ) [ G ( s , Y n ( s ) , x ) G ( s , Y n ( s ) , x ) ] N ( d s , d x ) 2 C ( M , L , m 0 , δ , γ 0 ) e 2 δ ( k 1 ) Y n ( σ ) Y 0 ( σ ) 2 , σ [ t k , t k + 1 ]
and
E 0 t U ( t , s ) B ( s ) [ u n ( s ) u 0 ( s ) ] d s 2 0 t U ( t , s ) 2 d s · 0 t B ( s ) [ u n ( s ) u 0 ( s ) ] 2 d s M 2 T 0 t B ( s ) [ u n ( s ) u 0 ( s ) ] 2 d s
Thus,
E Y n ( t ) Y 0 ( t ) 2 = E 0 t U ( t , s ) [ f ( s , Y n ( s ) ) f ( s , Y 0 ( s ) ) ] d s + 0 t U ( t , s ) B ( s ) [ u n ( s ) u 0 ( s ) ] d s + 0 t U ( t , s ) [ g ( s , Y n ( s ) ) g ( s , Y n ( s ) ) ] d W ( s ) + 0 t | x | V < 1 U ( t , s ) [ F ( s , Y n ( s ) , x ) F ( s , Y n ( s ) , x ) ] N ˜ ( d s , d x ) + 0 t | x | V 1 U ( t , s ) [ G ( s , Y n ( s ) , x ) G ( s , Y n ( s ) , x ) ] N ( d s , d x ) 2 2 E k = 1 T Π k 2 + 2 E 0 t U ( t , s ) B ( s ) [ u n ( s ) u 0 ( s ) ] d s 2 C ( M , L , m 0 , δ , γ 0 ) k = 1 T 1 k 2 · k = 1 T { k 2 e 2 δ ( k 1 ) Y n ( σ ) Y 0 ( σ ) 2 } + M 2 T 0 t B ( s ) [ u n ( s ) u 0 ( s ) ] 2 d s C 1 Y n ( t ) Y 0 ( t ) 2 + C 2 B ( s ) [ u n ( t ) u 0 ( t ) ] L 2 ( [ 0 , T ] , K ) 2
There exists M * such that
E Y n ( t ) Y 0 ( t ) 2 M * B ( t ) [ u n ( t ) u 0 ( t ) ] L 2 ( [ 0 , T ] , K ) 2
It is easy to obtain B ( t ) [ u n ( t ) u 0 ( t ) ] L 2 ( [ 0 , T ] , K ) 2 0 as n 0 from B is strongly continuous. Then,
E Y n ( t ) Y 0 ( t ) 2 0 as n 0
We obtain that J ( Y , u ) is sequentially lower semicontinuous in L 1 ( [ 0 , T ] , K ) by Balder’s theorem [36]. Hence, J ( Y , u ) is weakly lower semicontinuous in L 2 ( [ 0 , T ] , K ) . Since ( H L ( i v ) ) , κ > , J obtains its infimum at u 0 U a d , that is,
κ = lim n 0 T L ( t , Y n ( t ) , u n ( t ) ) d t 0 T L ( t , Y 0 ( t ) , u 0 ( t ) ) d t = κ
Thus, it completes the proof. □
Remark 8.
Here, it should be noted that the developed result above can be potentially applicable to other problems including epidemic spreading problems; for more details, please refer to the work [37].

5. An Example

In this part, we consider the stochastic heat equation in the following, for more details, please refer to the work [13] and, for some relevant background about the stochastic heat equation, please refer to [23,38],
y t ( t , ξ ) = 2 y ξ 2 ( t , ξ ) + y ( t , ξ ) s i n 1 2 + s i n t + s i n π t + ( s i n 2 t + c o s 3 t ) y ( t , ξ ) 6 ( y 2 ( t , ξ ) + 1 ) + s i n 2 t · y ( t , ξ ) 3 ( c o s 3 t + 2 ) W t ( t , ξ ) + c o s 2 t s i n u ( t , ξ ) 4 ( Z 2 ( t , ξ ) + 1 ) Z t ( t , ξ ) , t R , ξ ( 0 , 1 ) : = A ( t ) y + f ( t , y ) + g ( t , y ) W t + h ( t , y , Z ) Z t y ( t , 0 ) = y ( t , 1 ) = 0 , t R
where Z is a Lévy pure jump process on L 2 ( 0 , 1 ) , and W is a Q-Wiener process on L 2 ( 0 , 1 ) with T r Q < . From [13], we have
Let A 1 be the Laplace operator, and
D ( A 1 ) = { τ C 1 [ 0 , 1 ] | τ ( s ) is absolutely continuous on [ 0 , 1 ] , τ ( s ) L 2 ( 0 , 1 ) , τ ( 0 ) = τ ( 1 ) = 0 }
A 1 generates a C 0 -semigroup ( T ( t ) ) t 0 on L 2 ( 0 , 1 ) , which is
( T ( t ) τ ) ( s ) = n = 1 e n 2 π 2 t ( τ , e n ) e n ( s )
where ( · , · ) denotes the inner product on L 2 ( 0 , 1 ) , e n ( s ) = 2 s i n ( n π s ) , n = 1 , 2 , . . . , and T ( t ) e π 2 t for t 0 . Then,
D ( A ( t ) ) = D ( A 1 ) , t R A ( t ) τ = ( A 1 + s i n 1 2 + s i n t + s i n π t ) τ , τ D ( A ( t ) )
A ( t ) t R generates an evolution family { U ( t , s ) } t s such that
U ( t , s ) τ = T ( t s ) e s t s i n 1 2 + s i n θ + s i n π θ d θ τ , τ L 2 ( P , L 2 ( 0 , 1 ) )
Denote H = V = L 2 ( 0 , 1 ) , Equation (20) listed as the abstract form
d Y = A ( t ) Y d t + F ( t , Y ) d t + G ( t , Y ) d W + V < 1 H ( t , Y , z ) N ˜ ( d t , d z ) + V 1 H ( t , Y , z ) N ( d t , d z )
where Y : = y , F ( t , Y ) : = f ( t , y ) , G ( t , Y ) : = g ( t , y )
h ( t , y , Z ) d Z : = V < 1 H ( t , Y , z ) N ˜ ( d t , d z ) + V 1 H ( t , Y , z ) N ( d t , d z )
with
Z ( t , ξ ) = V < 1 z N ˜ ( t , d z ) + V 1 z N ( t , d z ) , H ( t , Y , z ) = h ( t , y , z ) z
Here, by T ( t ) e π 2 t , we get U ( t , s ) e ( π 2 1 ) ( t s ) , t s , i.e., M = 1 , δ = π 2 1 . By the almost automorphic property of s i n 1 2 + s i n θ + s i n π θ and
U ( t + s n , s + s n ) τ = T ( t s ) e s + s n t + s n s i n 1 2 + s i n θ + s i n π θ d θ τ = T ( t s ) e s t s i n 1 2 + s i n ( θ + s n ) + s i n π ( θ + s n ) d θ τ , τ L 2 ( P , H ) ,
we get that U ( t , s ) τ b A A ( T , L 2 ( P , H ) ) uniformly for all τ in any bounded subset of L 2 ( P , H ) .
Choose γ ( t ) = e t + 1 ; then, γ 0 = 2 e 1 , m 0 = 1 , K F = K G = K H = 0 . Note that F, G, H satisfy the new composition theorem, with constant L = m a x { 1 6 2 , Q L ( V , V ) 6 2 , ν ( B ( 0 ) ) 8 2 , b 8 2 } . If L satisfies the inequality 4 M 2 L γ 0 m 0 ( 1 δ + 1 ) k = 1 1 k 2 · k = 1 { k 2 e 2 δ ( k 1 ) } < 1 , then, by Theorem 5, the stochastic heat Equation (20) has a mild solution.
Taking into consideration the optimal control problem and defining B ( t ) u ( t ) = [ 0 , 1 ] p ( ξ , τ ) u ( t , τ ) d τ , ξ ( 0 , 1 ) , we have
d Y = A ( t ) Y d t + F ( t , Y ) d t + B ( t ) u ( t ) d t + G ( t , Y ) d W + V < 1 H ( t , Y , z ) N ˜ ( d t , d z ) + V 1 H ( t , Y , z ) N ( d t , d z ) , t [ 0 , T ]
t u ( t , · ) defined from [ 0 , T ] into K is measurable from the fact that u L 2 ( [ 0 , T ] × ( 0 , 1 ) ) . Set U a d = { u L 2 ( [ 0 , T ] × ( 0 , 1 ) ) , such that u ( t , · ) 2 σ ( t ) a . e , where σ ( t ) L 2 ( [ 0 , T ] , R + ) }. Consider the following cost function:
J ( Y u , u ) = E 0 T L ( t , Y u ( t ) , u ( t ) ) d t
Here, L : [ 0 , T ] × C ( [ 0 , T ] × ( 0 , 1 ) ) × L 2 ( [ 0 , T ] × ( 0 , 1 ) ) R { + }
L ( t , Y u ( t ) , u ( t ) ) = [ 0 , 1 ] 0 Y u ( t + s , ξ ) 2 d s d ξ + [ 0 , 1 ] Y u ( t , ξ ) 2 d ξ + [ 0 , 1 ] u ( t , ξ ) K 2 d ξ
From [22], the hypotheses ( H L ) stated in Section 4 are satisfied, and assumptions of Theorem 6; then, Theorem 6 holds. Thus, there exists an admissible control u 0 U a d such that J ( Y 0 , u 0 ) J ( Y u , u ) , for all u U a d .

6. Conclusions

In this paper, we introduce the concept of Poisson S γ 2 -PAA (or Poisson generalized Stepanov-like PAA) for stochastic processes, which generalizes the concept of Poisson Stepanov-like PAA in [6,15]. In addition, we provide some composition theorems of such stochastic processes, and then the existence of PAA solutions in distribution for some semilinear stochastic differential equations driven by Lévy noise by virtue of the Krasnoselskii–Schaefer type fixed point theorem is obtained, which is the main contribution throughout the paper. Finally, some sufficient conditions for ensuring the existence of optimal control pairs for stochastic differential equations driven by Lévy noise are established, which enriches our research. On the other hand, it is meaningful to generalize the Poisson S γ 2 -pseudo almost automorphy into more general cases, for instance, Poisson S γ 2 -weighted PAA or Poisson μ -PAA, which will be the research in the future.

Author Contributions

All authors contributed equally to this paper. The author C.T. establishes the concept of Poisson generalized Stepanov-like PAA, and also contributes the main results of the whole paper. The composition theorems and optimal control parts were proved by another author R.H. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Fund of Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province (MSSB-2021-11).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interests.

Appendix A

Appendix A.1. Proof of Theorem 2

Proof. 
Since Y A S γ 2 ( R , L 2 ( P , H ) ) and F A S γ 2 ( R × L 2 ( P , H ) × V , L 2 ( P , H ) ) , for the functions Y ˜ L l o c 2 ( R , L 2 ( P , H ) , γ d s ) , F ˜ ( · , Y , x ) L l o c 2 ( R , L 2 ( P , H ) , γ d s ) and a subsequence ( s n ) n N such that
t t + 1 γ ( s t ) Y ( s + s n ) Y ˜ ( s ) 2 d s 0
t t + 1 γ ( s t ) Y ˜ ( s s n ) Y ( s ) 2 d s 0
for each t R , as n .
t t + 1 V γ ( s t ) F ( s + s n , Y , x ) F ˜ ( s , Y , x ) 2 ν ( d x ) d s 0
t t + 1 V γ ( s t ) F ˜ ( s s n , Y , x ) F ( s , Y , x ) 2 ν ( d x ) d s 0
for each Y L 2 ( P , H ) , as n pointwise on R .
Suppose D ˜ ( t , x ) = F ˜ ( t , Y ˜ ( t ) , x ) . Then,
D ( s + s n , x ) D ˜ ( s , x ) = F ( s + s n , Y ( s + s n ) , x ) F ( s + s n , Y ˜ ( s ) , x ) + F ( s + s n , Y ˜ ( s ) , x ) F ˜ ( s , Y ˜ ( s ) , x )
Then, we can obtain
t t + 1 V γ ( s t ) D ( s + s n , x ) D ˜ ( s , x ) 2 ν ( d x ) d s 2 t t + 1 V γ ( s t ) F ( s + s n , Y ( s + s n ) , x ) F ( s + s n , Y ˜ ( s ) , x ) 2 ν ( d x ) d s + 2 t t + 1 V γ ( s t ) F ( s + s n , Y ˜ ( s ) , x ) F ˜ ( s , Y ˜ ( s ) , x ) 2 ν ( d x ) d s 2 L t t + 1 γ ( s t ) Y ( s + s n ) Y ˜ ( s ) 2 d s + 2 t t + 1 V γ ( s t ) F ( s + s n , Y ˜ ( s ) , x ) F ˜ ( s , Y ˜ ( s ) , x ) 2 ν ( d x ) d s
From (A1) and (A3), we have
t t + 1 V γ ( s t ) D ( s + s n , x ) D ˜ ( s , x ) 2 ν ( d x ) d s 0
as n pointwise on R . Similarly, from (A2) and (A4), we have
t t + 1 V γ ( s t ) D ˜ ( s s n , x ) D ( s , x ) 2 ν ( d x ) d s 0
pointwise on R , as n , which completes the proof. □

Appendix A.2. Proof of Theorem 4

Proof. 
We have
F ( t , Y ( t ) , x ) = h ( t , α ( t ) , x ) + F ( t , Y ( t ) , x ) h ( t , α ( t ) , x ) = h ( t , α ( t ) , x ) + F ( t , Y ( t ) , x ) F ( t , α ( t ) , x ) + ϕ ( t , α ( t ) , x )
In the following, we shall show that F ( t , Y ( t ) , x ) P A P γ 2 ( R × V , L 2 ( P , H ) ) by several steps.
Step 1: we claim that h b ( · , α b ( · ) , x ) A A ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . In fact, the function h satisfies ( 8 ) and h b A A ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , α b A A ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) . Moreover, K = { α ( t ) : t R ¯ } is compact. Thus, by Theorem 2, we have h b ( · , α b ( · ) , x ) A A ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) .
Step 2: At this moment, we claim that F b ( · , Y b ( · ) , x ) F b ( · , α b ( · ) , x ) P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . Since h , ϕ satisfies ( 8 ) , we obtain
0 1 V γ ( s ) F ( t + s , Y ( t + s ) , x ) F ( t + s , α ( t + s ) , x ) 2 ν ( d x ) d s = t t + 1 V γ ( s t ) F ( s , Y ( s ) , x ) F ( s , α ( s ) , x ) 2 ν ( d x ) d s 2 t t + 1 V γ ( s t ) h ( s , Y ( s ) , x ) h ( s , α ( s ) , x ) 2 ν ( d x ) d s 2 t t + 1 V γ ( s t ) ϕ ( s , Y ( s ) , x ) ϕ ( s , α ( s ) , x ) 2 ν ( d x ) d s 4 L t t + 1 γ ( s t ) β ( s ) 2 d s
Thus, for any T > 0 ,
1 2 T T T 0 1 V γ ( s ) F ( t + s , Y ( t + s ) , x ) F ( t + s , α ( t + s ) , x ) 2 ν ( d x ) d s d t 2 L T T T t t + 1 γ ( s t ) β ( s ) 2 d s d t
Since β b P A P 0 ( R , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) , we obtain
lim T 1 2 T T T 0 1 V γ ( s ) F ( t + s , Y ( t + s ) , x ) F ( t + s , α ( t + s ) , x ) 2 ν ( d x ) d s d t = 0 ,
which implies F b ( · , Y b ( · ) , x ) F b ( · , α b ( · ) , x ) P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) .
Step 3: we also claim that ϕ b ( · , α b ( · ) , x ) P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . There are finite open balls O k ( k = 1 , 2 , . . . , n ) with center α k K from the fact that K = { α ( t ) : t R ¯ } is compact. Then, { α ( t ) ; t R } k = 1 n O k , B k = { s R ; α ( s ) O k } and R = k = 1 n B k , if the radius ε is small enough. Assume E 1 = B 1 , E k = B k j = 1 k 1 B j ( 2 j n ) ; then, E i E j = , when i j , 1 i , j n .
Define α ¯ : R L 2 ( P , H ) by α ¯ ( s ) = α k , s E k , k = 1 , 2 , . . . , n is the step function. Thus, α ( s ) α ¯ ( s ) ε for all s R . We have
t t + 1 V γ ( s t ) ϕ ( s , α ( s ) , x ) 2 ν ( d x ) d s 2 t t + 1 V γ ( s t ) ϕ ( s , α ( s ) , x ) ϕ ( s , α ¯ ( s ) , x ) 2 ν ( d x ) d s + 2 t t + 1 V γ ( s t ) ϕ ( s , α ¯ ( s ) , x ) 2 ν ( d x ) d s 2 L t t + 1 γ ( s t ) α ( s ) α ¯ ( s ) 2 d s + 2 k = 1 n [ t , t + 1 ] E k V γ ( s t ) ϕ ( s , α k , x ) 2 ν ( d x ) d s 2 L γ 0 ε 2 + 2 k = 1 n [ t , t + 1 ] E k V γ ( s t ) ϕ ( s , α k , x ) 2 ν ( d x ) d s
Thus, for any T > 0 ,
1 2 T T T t t + 1 V γ ( s t ) ϕ ( s , α ( s ) , x ) 2 ν ( d x ) d s d t 2 L γ 0 ε 2 + 1 T T T k = 1 n [ t , t + 1 ] E k V γ ( s t ) ϕ ( s , α k , x ) 2 ν ( d x ) d s d t
Since ϕ b P A P 0 ( R × L 2 ( P , H ) × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) and the arbitrariness of ε , we can obtain lim T 1 2 T T T t t + 1 V γ ( s t ) ϕ ( s , α ( s ) , x ) 2 ν ( d x ) d s d t = 0 , which implies ϕ b ( · , α b ( · ) , x ) P A P 0 ( R × V , L 2 ( 0 , 1 ; L 2 ( P , H ) , γ d s ) ) . The proof is complete. □

References

  1. Liang, J.; N’Guérékata, G.M.; Xiao, T.J. Composition of pseudo almost automorphic and asymptotically almost automorphic functions. J. Math. Anal. Appl. 2008, 340, 1493–1499. [Google Scholar] [CrossRef] [Green Version]
  2. Diagana, T. Existence of pseudo almost automorphic solutions to some abstract differential equations with Sp-pseudo almost automorphic coefficients. Nonlinear Anal. 2009, 70, 3781–3790. [Google Scholar] [CrossRef]
  3. Mao, Y.Z.; Mei, J.X.; Xue, Y.X. Stepanov-like square-mean pseudo almost automorphic solutions to partial neutral stochastic functional differential equations. Ann. Pol. Math. 2013, 108, 263–287. [Google Scholar]
  4. Hu, Z.R.; Jin, Z. Stepanov-like pseudo almost automorphic mild solutions to nonautonomous evolution equations. Nonlinear Anal. 2009, 71, 2349–2360. [Google Scholar] [CrossRef]
  5. Diagana, T. Evolution equations in generalized Stepanov-like pseudo almost automorphic spaces. Electron. J. Differ. Equ. 2012, 2012, 1–19. [Google Scholar]
  6. Tang, C.; Chang, Y.K. S γ 2 -WPAA Functions and Applications to Stochastic Neutral Functional Equations with Infinite Delay. Dyn. Syst. Appl. 2018, 27, 495–529. [Google Scholar]
  7. Chen, Z.; Lin, W. Square-mean pseudo almost automorphic process and its application to stochastic evolution equations. J. Funct. Anal. 2011, 261, 69–89. [Google Scholar] [CrossRef] [Green Version]
  8. Chen, Z.; Lin, W. Square-mean weighted pseudo almost automorphic solutions for non-autonomous stochastic evolution equations. J. Math. Pures Appl. 2013, 100, 476–504. [Google Scholar] [CrossRef]
  9. Fu, M.M.; Liu, Z.X. Square-mean almost automorphic solutions for some stochastic differential equations. Proc. Amer. Math. Soc. 2010, 138, 3689–3701. [Google Scholar] [CrossRef] [Green Version]
  10. Chang, Y.K.; Zhao, Z.H.; N’Guérékata, G.M.; Ma, R. Stepanov-like almost automorphy for stochastic processes and applications to stochastic differential equations. Nonlinear Anal. RWA 2011, 15, 1130–1139. [Google Scholar] [CrossRef]
  11. Wang, Y.; Liu, Z.X. Almost periodic solutions for stochastic differential equations driven by Lévy noise. Nonlinearity 2012, 25, 2803–2821. [Google Scholar] [CrossRef]
  12. Liu, Z.X.; Sun, K. Almost automorphic solutions for stochastic differential equations driven by Lévy noise. J. Funct. Anal. 2014, 266, 1115–1149. [Google Scholar] [CrossRef]
  13. Li, K.X. Weighted pseudo almost automorphic solutions for nonautonomous SPDEs driven by Lévy noise. J. Math. Anal. 2015, 427, 686–721. [Google Scholar] [CrossRef]
  14. Cui, J.; Rong, W.P. Existence and stability of μ-pseudo almost automorphic solutions for stochastic evolution equations. Front. Math. China 2019, 2, 261–280. [Google Scholar] [CrossRef]
  15. Li, X.Q.; Tang, C.; Huang, T.M. Poisson S 2 -almost automorphy for stochastic processes and its applications to SPDEs driven by Lévy noise. Discret. Contin. Dyn. Syst.-B 2018, 23, 3309–3345. [Google Scholar]
  16. Li, Z.; Xu, L.P. Almost automorphic solutions for stochastic differential equations driven by Lévy noise. Phys. A Stat. Mech. Appl. 2020, 545, 122964. [Google Scholar] [CrossRef]
  17. Li, X.; Yong, J. Optimal Control Theory for Infinite Dimensional Systems; Birkhauser: Boston, MA, USA, 1995. [Google Scholar]
  18. Yong, J.; Zhou, X.Y. Stochastic Controls: Hamiltonian Systems and HJB Equations; Springer: New York, NY, USA, 1999. [Google Scholar]
  19. Mahmudov, N.I.; McKibben, M.A. On backward stochastic evolution equations in Hilbert spaces and optimal control. Nonlinear Anal. Theory Methods Appl. 2007, 67, 1260–1274. [Google Scholar] [CrossRef]
  20. Wang, J.; Wei, W.; Zhou, Y. Fractional finite time delay evolution systems and optimal controls in infinite-dimensional spaces. J. Dyn. Control. Syst. 2011, 17, 515–535. [Google Scholar] [CrossRef]
  21. Wang, J.; Zhou, Y.; Medved, M. On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 2012, 152, 31–50. [Google Scholar] [CrossRef]
  22. Rajivganthi, C.; Muthukumar, P. Almosst automorphic solutions for fractional stochastic differential equations and its optimal control. Optim. Control Appl. 2016, 37, 663–681. [Google Scholar] [CrossRef]
  23. Peszat, S.; Zabczyk, J. Stochastic Partial Differential Equations with Lévy Noise; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
  24. Sato, K.I. Lévy Process and Infinite Divisibility; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
  25. Applebaum, S. Lévy Process and Stochastic Calculus, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
  26. Pankov, A. Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations; Kluwer: Dordrecht, The Netherlands, 1990. [Google Scholar]
  27. Bochner, S. Curvature and Betti numbers in real and complex vector bundles. Rend. Semin. Mat. Univ. Politec. Torino 1955, 15, 225–253. [Google Scholar]
  28. Diagana, T.; N’Guérékata, G.M. Stepanov-like almost automorphic functions and applications to some similinear equations. Appl. Anal. 2007, 86, 723–733. [Google Scholar] [CrossRef]
  29. Bezandry, P.; Diagana, T. Existence of S 2 -almost periodic solutions to a class of nonautonomous stochastic evolution equations. Electron. J. Qual. Theory Differ. Equ. 2008, 35, 1–19. [Google Scholar] [CrossRef]
  30. Xiao, T.J.; Liang, J.; Zhang, J. Pseudo almost automorphic solutions to semilinear differential equations in Banach space. Semigroup Forum 2008, 76, 518–524. [Google Scholar] [CrossRef]
  31. N’Guérékata, G.M.; Pankov, A. Stepanov-like almost automorphic functions and monotone evolution equations. Nonlinear Anal. 2008, 68, 2658–2667. [Google Scholar] [CrossRef]
  32. Ding, H.S.; Liang, J.; Xiao, T.J. Some properties of Stepanov-like almost automorphic functions and applications to abstract evolutions. Appl. Anal. 2009, 88, 1079–1091. [Google Scholar] [CrossRef]
  33. Shang, Y.L. The limit behavior of a stochastic logistic model with individual time-dependent rates. J. Math. 2013, 2013, 502635. [Google Scholar] [CrossRef]
  34. Shang, Y.L. Group consensus of multi-agent systems in directed networks with noises and time delays. Int. J. Syst. Sci. 2015, 46, 2481–2492. [Google Scholar] [CrossRef]
  35. Burton, T.A.; Kirk, C. A fixed point theorem of Krasnoselskii–Schaefer type. Math. Nachr. 1998, 189, 23–31. [Google Scholar] [CrossRef]
  36. Balder, E.J. Necessary and sufficient conditions for L1-strong weak lower semicotinuity of integral functionals. Nonlinear Anal. Methods Appl. 1987, 11, 1399–1404. [Google Scholar] [CrossRef] [Green Version]
  37. Shang, Y.L. Optimal control strategies for virus spreading in inhomogeneous epidemic dynamics. Can. Math. Bull. 2013, 56, 621–629. [Google Scholar] [CrossRef]
  38. Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
Figure 1. The trajectory of almost periodic function.
Figure 1. The trajectory of almost periodic function.
Symmetry 13 01674 g001
Figure 2. The trajectory of pseudo almost automorphic function.
Figure 2. The trajectory of pseudo almost automorphic function.
Symmetry 13 01674 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Tang, C.; Hou, R. Pseudo Almost Automorphic Solutions for Stochastic Differential Equations Driven by Lévy Noise and Its Optimal Control. Symmetry 2021, 13, 1674. https://doi.org/10.3390/sym13091674

AMA Style

Tang C, Hou R. Pseudo Almost Automorphic Solutions for Stochastic Differential Equations Driven by Lévy Noise and Its Optimal Control. Symmetry. 2021; 13(9):1674. https://doi.org/10.3390/sym13091674

Chicago/Turabian Style

Tang, Chao, and Rong Hou. 2021. "Pseudo Almost Automorphic Solutions for Stochastic Differential Equations Driven by Lévy Noise and Its Optimal Control" Symmetry 13, no. 9: 1674. https://doi.org/10.3390/sym13091674

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop