The Comparison Features of ECG Signal with Different Sampling Frequencies and Filter Methods for Real-Time Measurement
Abstract
:1. Introduction
- We analyzed the crucial components in the ECG signal. Noise factors affect the signal and how to design filters to remove noise.
- We investigated ECG signals from BIT/ MIH database with different sampling frequencies. We apply filters to compare the difference between the received signals.
- We proposed an ECG signal acquisition model based on large production components to collect real-time signals. We also apply filters to remove noise with different sampling frequencies of the device. We compare the parameters and draw conclusions.
2. Materials and Methods
2.1. ECG Characteristic Analysis and Related Works
2.2. Design a High-Pass and Low-Pass Filter
2.3. Standard Evaluation ECG Signal before and after Applied Filter with Different Sampling Frequencies
- We created new databases from the MIT/BIT database with sampling frequencies.
- We performed the filter on both new and old data.
- We selected the data after filtering at 360 Hz as the original data and the data at the new sampling frequencies as the comparison data.
- The standards for comparison included: signal to noise ratio of the signal. We compared the amplitudes of the P wave, QRS wave and T wave at different sampling frequencies.
3. Results
3.1. Testing the Filter with the MIT/BIH Database
3.1.1. Analysis of the Minimum Sampling Frequency Choice for Heart Rate Applications
3.1.2. Analysis of the Minimum Sampling Frequency for P, QRS, T Wave Applications
- (a)
- Analysis of SNR without filter and with the proposed filters.
- (b)
- Optimal number of filter orders
3.2. Experiment with Volunteers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cardiovascular Diseases (CVDs); World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Zhu, W.; Chen, X.H.; Wang, Y.; Wang, L. Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 131–138. [Google Scholar] [CrossRef]
- Magsi, H.S.; Sodhro, A.H.; Al-Rakhami, M.S.; Zahid, N.; Pirbhulal, S.; Wang, L. A Novel Adaptive Battery-Aware Algorithm for Data Transmission in IoT-Based Healthcare Applications. Electronics 2021, 10, 367. [Google Scholar] [CrossRef]
- George, U.Z.M.; Moon, K.S.; Lee, S.Q. Extraction and Analysis of Respiratory Motion Using a Comprehensive Wearable Health Monitoring System. Sensors 2021, 21, 1393. [Google Scholar] [CrossRef]
- Li, D.W.; Wu, H.; Zhao, J.; Tao, Y.; Fu, J. Automatic Classification System of Arrhythmias Using 12-Lead ECGs with a Deep Neural Network Based on an Attention Mechanism. Symmetry 2020, 12, 1827. [Google Scholar] [CrossRef]
- Li, D.T.; Tao, Y.; Zhao, J.; Wu, H. Classification of Congestive Heart Failure from ECG Segments with a Multi-Scale Residual Network. Symmetry 2020, 12, 2019. [Google Scholar] [CrossRef]
- Peters, S. Emery-Dreifuss FHL1 Mutation: A Credo for a Better ECG Definition in Arrhythmogenic Cardiomyopathy. Mod. J. Med. Biol. 2021, 1, 1–2. [Google Scholar]
- Bao, X.A.; Abdala, A.K.; Kamavuako, E.N. Estimation of the Respiratory Rate from Localised ECG at Different Auscultation Sites. Sensors 2021, 21, 78. [Google Scholar] [CrossRef]
- Chen, S.; Hua, W.; Li, Z.; Li, J.; Gao, X. Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. Control 2017, 31, 165–173. [Google Scholar] [CrossRef]
- Augustyniak, P. Diagnostic Interpretation of Non-Uniformly Sampled Electrocardiogram. Sensors 2021, 21, 2969. [Google Scholar] [CrossRef]
- Chen, Y.L.Z. Intelligent and Real-Time Data Acquisition for Medical Monitoring in Smart Campus. IEEE Access 2018, 6, 74836–74846. [Google Scholar]
- Bashar, S.K.; Ding, E.; Walkey, A.J.; Mcmanus, D.D.; Chon, K.H. Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. IEEE Access 2019, 7, 88357–88368. [Google Scholar] [CrossRef]
- Madeiro, J.P.V.; Santos, E.M.B.; Cortez, P.C.; Felix, J.H.S.; Schlindwein, F.S. Evaluating Gaussian and Rayleigh-Based Mathematical Models for T and P-waves in ECG. IEEE Lat. Am. Trans. 2017, 15, 843–853. [Google Scholar] [CrossRef]
- Mateo, J.; Torres, A.M.; Aparicio, A.; Santos, J.L. An efficient method for ECG beat classification and correction of ectopic beats. Comput. Electr. Eng. 2016, 53, 219–229. [Google Scholar] [CrossRef]
- Bui, N.T.; Phan, D.T.; Nguyen, T.P.; Hoang, G.; Choi, J.; Bui, Q.C.; Oh, J. Real-Time Filtering and ECG Signal Processing Based on Dual-Core Digital Signal Controller System. IEEE Sens. 2020, 20, 6492–6503. [Google Scholar] [CrossRef]
- Saxena, S.; Jais, R.; Hota, M.K. Removal of Powerline Interference from ECG Signal using FIR, IIR, DWT and NLMS Adaptive Filter. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019. [Google Scholar]
- Levkov, C.; Mihov, G.; Ivanov, R.; Daskalov, I.; Christov, I.; Dotsinsk, I. Removal of power-line interference from the ECG: A review of the subtraction procedure. Biomed. Eng. OnLine 2005, 4, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateoa, J.; Sánchez-Morla, E.M.; Santos, J.L. A new method for removal of powerline interference in ECG and EEG recordings. Comput. Electr. Eng. 2015, 45, 235–248. [Google Scholar] [CrossRef]
- Bui, N.T.; Nguyen, T.M.T.; Park, S.; Choi, J.; Vo, T.M.T.; Kang, Ye.; Kim, By.; Oh, J. Design of a nearly linear-phase IIR filter and JPEG compression ECG signal in real-time system. Biomed. Signal Process. Control 2021, 67, 102431. [Google Scholar] [CrossRef]
- Barhatte, A.S.; Ghongade, R.; Tekale, S.V. Noise Analysis of ECG Signal Using Fast ICA. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016. [Google Scholar]
- Nevi, J.; Shakya, D.K. Denoising Baseline Wander Noise from Electrocardiogram Signal using Fast ICA with Multiple Adjustments. Int. J. Comput. Appl. 2014, 99, 34–39. [Google Scholar]
- Kher, R. Signal Processing Techniques for Removing Noise from ECG Signals. J. Biomed. Eng. Res. 2019, 3, 1–9. [Google Scholar]
- Pisani, B. Digital Filter Types in Delta-Sigma ADCs. Texas Instrument: USA. 2017. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwio1frwuvPxAhWPwpQKHfAFCAYQFjAAegQIAxAD&url=https%3A%2F%2Fwww.ti.com%2Flit%2FSBAA230&usg=AOvVaw20EnmELqUtCkeuJau3m1qv (accessed on 1 July 2021).
- Husain, K.; Zahid, M.S.M.; Ul Hassan, S.; Hasbullah, S.; Mandala, S. Advances of ECG Sensors from Hardware, Software and Format Interoperability Perspectives. Electronics 2021, 10, 105. [Google Scholar] [CrossRef]
- Mohaddes, F.; da Silva, R.L.; Akbulut, F.P.; Zhou, Y.; Tanneeru, A.; Lobaton, E.; Lee, B.; Misra, V. A Pipeline for Adaptive Filtering and Transformation of Noisy Left-Arm ECG to Its Surrogate Chest Signal. Electronics 2020, 9, 866. [Google Scholar] [CrossRef]
- Poungponsri, S.; Yu, X.-H. An. adaptive filtering approach for electrocardiogram (ECG) signal noise reduction using neural networks. Neurocomputing 2013, 117, 206–213. [Google Scholar] [CrossRef]
- Anuradha, P.; Arabelli, R.; Rajkumar, K. Noise removal of ECG signals with adaptive filtering. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Dasan, E.; Panneerselvam, I. A novel dimensionality reduction approach for ECG signal via convolutional denoising autoencoder with LSTM. Biomed. Signal Process. Control 2021, 63, 102225. [Google Scholar] [CrossRef]
- Baker, B. Delta-Sigma ADCs in a Nutshell. Texas Instrument: USA. 2007. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjTgIGPu_PxAhXpFqYKHRShD8MQFjAAegQIAxAD&url=http%3A%2F%2Fwww.rpi.edu%2Fdept%2Fecse%2Frta%2FLMS%2FDelta-Sigma_ADCs.pdf&usg=AOvVaw1gtlqld4N66_n8O7rOVKuv (accessed on 1 July 2021).
- Kumngern, M.; Auphithak, N.; Khateb, F.; Kulej, T. 0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors 2020, 20, 7343. [Google Scholar] [CrossRef]
- Zompanti, A.; Sabatini, A.; Grasso, S.; Pennazza, G.; Ferri, G.; Barile, G.; Chello, M.; Lusini, M.; Santonico, M. Development and Test of a Portable ECG Device with Dry Capacitive Electrodes and Driven Right Leg Circuit. Sensors 2021, 21, 2777. [Google Scholar] [CrossRef] [PubMed]
- Bui, N.T.; Vo, T.H.; Kim, B.-k.; Oh, J. Design of a Solar-Powered Portable ECG Device with Optimal Power Consumption and High Accuracy Measurement. Appl. Sci. 2019, 9, 2129. [Google Scholar] [CrossRef] [Green Version]
- Plawiak, P. ECG Signals (1000 Fragments). 2017. Available online: https://data.mendeley.com/datasets/7dybx7wyfn/3 (accessed on 1 July 2021).
- Instruments, T. ADS1293 24-bit, 3-ch, Low-Power Analog Front-End (AFE) for ECG Applications. Texas Instrument: USA. 2014. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiHsYuhu_PxAhUmyIsBHXCUDJ4QFjABegQIBBAD&url=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fads1293&usg=AOvVaw1Hg-0ApG7NF92PtKp3VDnE (accessed on 1 July 2021).
- Integrated, M. MAX86150 Integrated Photoplethysmogram and Electrocardiogram Bio-Sensor Module for Mobile Health. Integrated, M., Ed.; 2018. Available online: https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX86150.html (accessed on 1 July 2021).
- Beach, C.; Krachunov, S.; Pope, J.; Fafoutis, X.; Robert, J.P.; Craddock, I.; Alexander, J.C. An Ultra Low Power Personalizable Wrist Worn ECG Monitor Integrated with IoT Infrastructure. IEEE Access 2018, 6, 44010–44021. Available online: https://ieeexplore.ieee.org/document/8432430 (accessed on 1 July 2021). [CrossRef]
- Liu, L.; He, L.; Zhang, Y.; Hua, T. A Battery-Less Portable ECG Monitoring System with Wired Audio Transmission. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 697–709. [Google Scholar] [CrossRef]
- Li, J.; Deng, G.; Wei, W.; Wang, H.; Ming, Z. Design of a Real-Time ECG Filter for Portable Mobile Medical Systems. IEEE Access 2016, 5, 696–704. [Google Scholar] [CrossRef]
- The McGill Physiology Virtual Lab. Electrocardiogram Waveform. 2021. Available online: https://www.medicine.mcgill.ca/physio/vlab/cardio/introECG.htm (accessed on 15 May 2021).
- Bae, T.W.; Lee, S.H.; Kwon, K.K. An Adaptive Median Filter Based on Sampling Rate for R-Peak Detection and Major-Arrhythmia Analysis. Sensors 2020, 20, 6144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, S.; Li, F.; Wang, J.; Sangaiah, A.K.; Sheng, V.S.; Ding, X. An ECG Signal De-Noising Approach Based on Wavelet Energy and Sub-Band Smoothing Filter. Appl. Sci. 2019, 9, 4968. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Song, Y.; Gou, L.; Zou, Y. A Novel Wearable Flexible Dry Electrode Based on Cowhide for ECG Measurement. Biosensors 2021, 11, 101. [Google Scholar] [CrossRef] [PubMed]
Filter | Items | Descriptions |
---|---|---|
High-Pass (IIR) | Method | Elliptic |
Cutoff frequency (Hz) | Hz → 0.05 Hz Apass = 1 dB, Astop = 80 dB | |
Low-Pass (IIR) | Method | Elliptic |
Cutoff frequency (Hz) | 35 Hz → 45 Hz Apass = 1 dB, Astop = 80 dB | |
Low-Pass (FIR) | Method | Equiripple |
Cutoff frequency (Hz) | 35 Hz → 45 Hz Apass = 1 dB, Astop = 80 dB |
MIT/BIH ECG Samples | Sampling Frequency (Hz) | SNR | Amplitude (500:900) 1 | Order of Filter | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Without Filters | Combined High-Pass (IIR) and Low-Pass (IIR) | Combined High-Pass (IIR) and Low-Pass (FIR) | P Wave (mV) | QRS Wave (mV) | T Wave (mV) | HP (IIR) | LP (IIR) | LP (FIR) | ||
AFIB-201m(5) | 360 (original) | 245.2 | 360.7 | 324.8 | (12, 8, 8) | (270, 230, 240) | (45, 30, 30) | 7 | 15 | 91 |
180 | 250.7 | 359.4 | 318.1 | (12, 8, 8) | (270, 220, 230) | (45, 30, 30) | 7 | 15 | 45 | |
120 | 219.3 | 146.5 | - | (12, 8, -) | (270, 220, -) | (45, 30, -) | 7 | - | - | |
90 | 324.2 | 215.9 | - | (12, 8, -) | (270, 220, -) | (45, 30, -) | 7 | - | - | |
AFL-203m(2) | 360 (original) | 281.8 | 1134.7 | 974.5 | (22, 12, 20) | (320, 265, 290) | (60, 40, 45) | 7 | 15 | 91 |
180 | 278.3 | 1106.1 | 935.9 | (22, 12, 20) | (320, 260, 275) | (52, 40, 45) | 7 | 15 | 45 | |
120 | 423.7 | 320.8 | - | (22, 12, -) | (320, 260, -) | (52, 40, -) | 7 | - | - | |
90 | 382.4 | 284.4 | - | (22, 12, -) | (310, 260, -) | (50, 40, -) | 7 | - | - | |
APB-100m(4) | 360 (original) | 17.2 | 28.4 | 21.4 | (32, 15, 30) | (290, 240, 240) | (25, 20, 22) | 7 | 15 | 91 |
180 | 17.0 | 29.3 | 29.8 | (32, 15, 20) | (290(240, 230) | (25, 20, 20) | 7 | 15 | 45 | |
120 | 16.7 | 16.4 | - | (32, 15, -) | (290, 240, -) | (25, 20, -) | 7 | - | - | |
90 | 14.8 | 14.6 | - | (32, 15, -) | (285, 260, -) | (25, 20, -) | 7 | - | - | |
NSR-100m(5) | 360 (original) | 21.1 | 37.9 | 30.2 | (50, 25, 40) | (340, 310, 300) | (40, 25, 30) | 7 | 15 | 91 |
180 | 21.2 | 38.4 | 35.1 | (50, 25, 35) | (340, 310, 295) | (40, 25, 30) | 7 | 15 | 45 | |
120 | 21.4 | 20.8 | - | (50, 25, -) | (340, 310, -) | (40, 25, -) | 7 | - | - | |
90 | 24.7 | 24.1 | - | (50, 25, -) | (340, 300, -) | (30, 20, -) | 7 | - | - | |
SVTA-209m(0) | 360 (original) | 19.6 | 30.4 | 27.3 | (80, 70, 80) | (470, 325, 350) | (60, 40, 60) | 7 | 15 | 91 |
180 | 19.8 | 31.0 | 27.6 | (80, 70, 80) | (470, 325, 340) | (60, 40, 50) | 7 | 15 | 45 | |
120 | 19.9 | 19.4 | - | (80, 60, -) | (460, 325, -) | (60, 40, -) | 7 | - | - | |
90 | 21.3 | 20.9 | - | (80, 60, -) | (440, 330, -) | (55, 40, -) | 7 | - | - |
Samples | Measured Sampling Frequency (Hz) | SNR | Amplitude | Number of Computations | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Without Filters | Combined High-Pass (IIR) and Low-Pass (IIR) | Combined High-Pass (IIR) and Low-Pass (FIR) | P Wave (mV) | QRS Wave (mV) | T Wave (mV) | HP (IIR) | LP (IIR) | LP (FIR) | ||
Real data with different sampling frequencies (Hz) | 2133 | 11.2 | 124.2 | 107.5 | (-, 0.1, 0.12) | (1.9, 1.0, 1.2) | (0.5, 0.4, 0.45) | 15 | 15 | 540 |
400 | 23.6 | 99.9 | 82.4 | (0.2, 0.1, 0.12) | (0.15, 0.11, 0.12) | (0.5, 0.4, 0.45) | 15 | 15 | 101 | |
200 | 77.3 | 132.6 | 110.2 | (0.18, 0.15, 0.15) | (0.14, 0.15, 0.11) | (0.45, 0.35, 0.4) | 15 | 15 | 50 | |
100 | 147.6 | - | - | (0.2, -, -) | (0.15, -, -) | (0.45, -, -) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, N.-T.; Byun, G.-s. The Comparison Features of ECG Signal with Different Sampling Frequencies and Filter Methods for Real-Time Measurement. Symmetry 2021, 13, 1461. https://doi.org/10.3390/sym13081461
Bui N-T, Byun G-s. The Comparison Features of ECG Signal with Different Sampling Frequencies and Filter Methods for Real-Time Measurement. Symmetry. 2021; 13(8):1461. https://doi.org/10.3390/sym13081461
Chicago/Turabian StyleBui, Ngoc-Thang, and Gyung-su Byun. 2021. "The Comparison Features of ECG Signal with Different Sampling Frequencies and Filter Methods for Real-Time Measurement" Symmetry 13, no. 8: 1461. https://doi.org/10.3390/sym13081461
APA StyleBui, N.-T., & Byun, G.-s. (2021). The Comparison Features of ECG Signal with Different Sampling Frequencies and Filter Methods for Real-Time Measurement. Symmetry, 13(8), 1461. https://doi.org/10.3390/sym13081461