# Symmetry and Quantum Features in Optical Vortices

## Abstract

**:**

## 1. Introduction

_{z}, and energy density, w, must satisfy the condition

## 2. Electrodynamics and Quantum Features of Structured Light

#### 2.1. Field Operator Symmetries

**E**and

**B**respectively, for freely propagating light—although confined radiation may conform to mode-specific rules. For example, a linearly polarized standing wave in a laser cavity may have either even or odd spatial inversion symmetry, according to whether it supports an even or odd number of half-wavelengths between its end-mirrors.

_{2}has eigenvalues of ±1 denoting even or odd parity. Charge conjugation has little relevance for the interactions of structured light, and in considering the spatial parity of propagating light at a measurement instant in time we can focus on $\mathcal{P}$ alone.

**A**, it is most appropriate to develop a detailed theory in terms of transverse (solenoidal) electric and magnetic fields, ${E}^{\perp}$ and

**B**, respectively, developed as expansions in any complete set of electromagnetic modes [57].

**B**is itself pure solenoidal, irrespective of the gauge; the transverse label is unnecessary. These fields are rigorously related to the vector potential:

**A**, though they are not sufficient to fully define it (for it is a gauge-dependent quantity, and not an observable). It follows that the quantum field operators ${E}^{\perp}$ and

**B**have specific and opposite signatures for space and time parity: ${E}^{\perp}$ is odd and

**B**even with respect to inversion $\mathcal{P}$; both have the opposite signatures under $\mathcal{T}$. It is as a result of this difference that chiroptical effects (those that discriminate the handedness of chiral matter) are most commonly manifest in light-matter interactions entailing an interference of electric and magnetic coupling with light [55,58,59,60].

**E**, c

**B**) space [62,63], whose implementation is equivalent in physical effect to a local coordinate rotation of π/2 in physical 3D space, about an axis defined by the local Poynting vector. To such an end, it is possible to cast equations in terms of another adjunct vector field,

**C**(representing one of a potentially cascading sequence), through the relation $E\left(r,t\right)=-\nabla \times C\left(r,t\right)$ [64], using the non-zero curl as an alternative basis for representing electromagnetic properties [65]. However,

**C**and its kind again represent incompletely defined, gauge-dependent properties, and it emerges that all quantifiable expressions for all observables may correctly be secured without their involvement.

#### 2.2. Quantised Fields and Mode Expansions

**k**

_{Ω}(with wave number k

_{Ω}). Perhaps surprisingly, quantum aspects of radiation are quite commonly cast in terms of plane-wave descriptions, despite the intrinsic lack of physicality associated with their infinite transverse extent. However, for vortex structured beams such a representation is clearly inadmissible, and with a mapping ${\mathbb{R}}^{3}\to {\mathbb{Z}}^{2}\mathbb{R}$ the wave-vector space is typically redefined in terms of $k,\ell ,p$, signifying partition into axial and transverse (angular and radial) functions. Here, $\ell \mathrm{and}p$ are integers, the former designating a topological charge and the latter a secondary index denoting a form of radial distribution [67]; in the well-studied case of Laguerre-Gaussian optical beams, $\ell \mathrm{and}p$ signify the degree and order of an associated Laguerre polynomial ${P}_{\ell}^{p}$ that tempers a Gaussian radial distribution. For Bessel beams, $\ell $ denotes the order of a Bessel function of the first kind, and the secondary index is redundant [68].

**B**, which represent observables, can be cast as Hermitian quantum operators. Their explicit time dependence can be secured from the Heisenberg equations of motion, as indicated in the following. On expansion in terms of any appropriate and complete set of modes Ω, the operator representations of these operators, and the vector potential, at a position

**r**take the following forms, conveniently expressed in terms of cylindrical coordinates $r\equiv \left(z,\rho ,\varphi \right)$;

**e**

_{Ω}, the complex polarization vector, and a

_{Ω}, the corresponding photon annihilation operator; the counterpart term featuring the creation operator ${a}_{\mathsf{\Omega}}^{\u2020}$ is the Hermitian conjugate written as h.c. Also, ${\mathsf{\Xi}}_{\mathsf{\Omega}}$ is a mode normalization factor incorporating V

^{−1/2}, where V is the quantization volume V, such that the number of photons in this volume is given by ${a}_{\mathsf{\Omega}}^{\u2020}{a}_{\mathsf{\Omega}}$; ${f}_{\mathsf{\Omega}}$ is a dimensionless radial distribution function. The electric and magnetic fields both satisfy the time-independent Helmholtz equation:

_{Ω}= ω/c.

**B**. Under the inversion operation $\mathcal{P}$, which spatially inverts polarization, wave-vectors, and position vectors, the electric field has odd spatial parity, and is therefore formally representable as a polar vector; the magnetic field is represented by an axial vector (a pseudovector).

#### 2.3. Linear Momentum Density

_{0}is the vacuum permittivity; the second term is included to ensure Hermiticity of the operator, since the operators ${E}^{\perp}$ and

**B**do not commute [71]. Hence,

**P**is clearly odd in both time and space, as befits linear momentum. Its local direction serves to identify the local normal to the optical wavefront surface. The Poynting vector is not, however, anchored in the physical 3D space of linear dimensions—although, as an expression of linear momentum density, it can indeed be defined at any point or region within that space. Momentum cannot be graphically represented by a vector portrayed in physical space—only in reciprocal (momentum) space.

**B**is intrinsically transverse with respect to the local Poynting vector. For a given mode, $\left({E}^{\perp},B,P\right)$ represent a right-handed orthogonal set and their components may be used to define a locally orthogonal triad of axes, of Cartesian or cylindrical form, for example. In structured light the local Poynting vector is not simply identifiable with the direction of beam propagation [72]—its orientation may vary across the beam as illustrated in Figure 1. Exact calculations of the Poynting trajectories for both LG and Bessel beams in fact exhibit a subtle difference between surfaces of hyperboloid and cylindrical form [73]. Both ${E}^{\perp}$ and

**B**then have components parallel to the beam axis, and a component pointing inwards. Their relative magnitudes are locally determined, at a radial displacement ρ from the beam axis, by an angle expressed as follows [42]:

#### 2.4. Quantum Uncertainty

**k**and

**k**′ of the same magnitude k, across a range of radial distances $\rho ,\rho +\delta \rho $. It has been shown that close to the beam axis the distinguishability scales as k

^{2}$\ell $

^{−1}$\delta \rho $, i.e., inversely proportional to the topological charge $\ell $. However, for positions remote from the beam axis, the resolution limit scales with k

^{−1}$\ell $

^{2}ρ

^{−3}$\delta \rho $, quadratic in $\ell $ [42].

## 3. Angular Momentum Quantization

#### 3.1. Quantum Operators

**J**of any finite beam is given by the following volume integral:

**S**operator defined by Equation (13), and the radiation Hamiltonian. Any other polarization state may be resolved into a fractionally weighted superposition of these two circular polarizations, equivalent to a rotation of the basis space on the Poincaré sphere.

**J**=

**S**+

**L**, where

**L**is an orbital angular momentum (OAM) given by [26]:

**ε**denotes the Levi-Civita antisymmetric tensor, and repeated indices require summation:

#### 3.2. Conservation of Angular Momentum

## 4. Spatial Symmetry Aspects of Optical Vortices

#### 4.1. Polarisation States, Chirality, and Helicity

^{2}κ for monochromatic (not necessarily paraxial) light [115], the flow of chirality satisfies the following continuity equation [59,116,117,118]:

#### 4.2. Cylindrical and Rotational Symmetry

_{n}symmetry elements for all integers n, where the Schoenflies symbol S

_{n}signifies invariance under reflection with rotation about a perpendicular axis through an angle 2π/n. As is well known, the operation of spatial inversion represented by the parity operator $\mathcal{P}$ is exactly equivalent to mirror reflection in any plane, followed by π rotation about the normal to the chosen plane of reflection. (Regarding planar surfaces or interfaces, the sole requirement is a lack of reflection symmetry in any plane perpendicular to the surface).

_{R}, where ${z}_{\mathrm{R}}\approx {w}_{0}/\theta $. With the standard phasor decomposition of Equation (3), the local electric field at a position $r\equiv \left(z,\rho ,\varphi \right)$ in cylindrical coordinates can be represented as follows:

**θ**′ is the gradient of θ.

**B**. Field gradients prove to play a significant role in a wide range of quadrupole and higher multipole interactions [39,123,124,125,126,127,128,129,130,131,132]. In molecular or dielectric materials, and especially those with a chiral structure, electronic transitions may be mediated by more than one type of multipole, and through involvement of the azimuthal phasor in twisted light, the electric quadrupole form of coupling in particular introduces a range of new and interesting features. For example, it can introduce a capacity for discriminating physical media of left- or right-handed structure, as for example in angle-resolved Raman scattering of vortex light to resolve optically active molecular enantiomers [24,133,134].

**B**fields in each twisted mode, under $\mathcal{P}$, are those of the parent operators. The same applies, of course, to $\mathcal{C}$ and $\mathcal{T}$ parity signatures.

**θ**′

_{1}is a constant irrespective of the azimuthal angle ϕ. This signifies that its Cartesian components in the transverse plane change sign on π/2 rotation about the beam axis. As a property of the beam it has the properties of the irreducible representation (irrep) A

_{2}in the point group C

_{∞}

_{v}symmetry, being invariant under arbitrary rotations, and antisymmetric under reflections in any vertical plane [138].

**Φ**′

_{1}, whose complex value changes non-uniformly around any ring, so that C

_{∞}cylindrical rotation symmetry is absent. Consider rotation by π radians about the z axis: the real part of

**Φ**′

_{1}is symmetric under C

_{2}rotation in the (x, z) plane, and antisymmetric for C

_{2}rotation in the (y, z) plane; for the imaginary part of

**Φ**′

_{1}, the converse applies. These characteristics mark out Re(

**Φ**′

_{1}) as transforming under the irrep B

_{2}of the dihedral point group D

_{2}, whilst Im(

**Φ**′

_{1}) transforms under irrep B

_{3}.

**θ**′

_{2}is once again invariant under cylindrical rotations and antisymmetric under reflections; it, too, belongs to the irrep A

_{2}in the point group C

_{∞v}. Here, however, the symmetry representations under the operations of the D

_{2}point group are A for Re (

**Φ**′

_{2}) and B

_{1}for Im (

**Φ**′

_{2}). Note the difference in behaviour of both the real and imaginary parts, under C

_{2}(z) rotation, exhibited by these differing values of $\ell $.

## 5. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A
**1992**, 45, 8185–8189. [Google Scholar] [CrossRef] - Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic laser mode converters and transfer of orbital angular-momentum. Opt. Commun.
**1993**, 96, 123–132. [Google Scholar] [CrossRef] - Van Enk, S.J.; Nienhuis, G. Spin and orbital angular momentum of photons. Europhys. Lett.
**1994**, 25, 497–501. [Google Scholar] [CrossRef] - Arlt, J.; Dholakia, K.; Allen, L.; Padgett, M.J. The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opt.
**1998**, 45, 1231–1237. [Google Scholar] [CrossRef] - Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett.
**2010**, 105, 153601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Galvez, E.J.; Coyle, L.E.; Johnson, E.; Reschovsky, B.J. Interferometric measurement of the helical mode of a single photon. New J. Phys.
**2011**, 13, 053017. [Google Scholar] [CrossRef] - O’Sullivan, M.N.; Mirhosseini, M.; Malik, M.; Boyd, R.W. Near-perfect sorting of orbital angular momentum and angular position states of light. Opt. Express
**2012**, 20, 24444–24449. [Google Scholar] [CrossRef] [PubMed][Green Version] - Santamato, E. Photon orbital angular momentum: Problems and perspectives. Fortschr. Phys.
**2004**, 52, 1141–1153. [Google Scholar] [CrossRef] - Andrews, D.L. Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008. [Google Scholar]
- Torres, J.P.; Torner, L. Twisted Photons: Applications of Light with Orbital Angular Momentum; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Bliokh, K.Y.; Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A
**2012**, 86, 033824. [Google Scholar] [CrossRef][Green Version] - Rubinsztein-Dunlop, H.; Forbes, A.; Berry, M.V.; Dennis, M.R.; Andrews, D.L.; Mansuripur, M.; Denz, C.; Alpmann, C.; Banzer, P.; Bauer, T.; et al. Roadmap on structured light. J. Opt.
**2017**, 19, 013001. [Google Scholar] [CrossRef] - Babiker, M.; Power, W.L.; Allen, L. Light-induced torque on moving atoms. Phys. Rev. Lett.
**1994**, 73, 1239–1242. [Google Scholar] [CrossRef] [PubMed] - Power, W.L.; Allen, L.; Babiker, M.; Lembessis, V.E. Atomic motion in light-beams possessing orbital angular-momentum. Phys. Rev. A
**1995**, 52, 479–488. [Google Scholar] [CrossRef] - Simpson, N.B.; Allen, L.; Padgett, M.J. Optical tweezers and optical spanners with Laguerre-Gaussian modes. J. Mod. Opt.
**1996**, 43, 2485–2491. [Google Scholar] [CrossRef] - Ashkin, A. Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA
**1997**, 94, 4853–4860. [Google Scholar] [CrossRef][Green Version] - Jones, P.H.; Maragò, O.M.; Volpe, G. Optical Tweezers: Principles and Applications; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics
**2012**, 6, 488–496. [Google Scholar] [CrossRef] - Vallone, G.; D’Ambrosio, V.; Sponselli, A.; Slussarenko, S.; Marrucci, L.; Sciarrino, F.; Villoresi, P. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett.
**2014**, 113, 060503. [Google Scholar] [CrossRef][Green Version] - Gibson, G.; Courtial, J.; Padgett, M.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.; Franke-Arnold, S. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express
**2004**, 12, 5448–5456. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mirhosseini, M.; Magaña-Loaiza, O.S.; O’Sullivan, M.N.; Rodenburg, B.; Malik, M.; Lavery, M.P.J.; Padgett, M.J.; Gauthier, D.J.; Boyd, R.W. High-dimensional quantum cryptography with twisted light. New J. Phys.
**2015**, 17, 033033. [Google Scholar] [CrossRef] - Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light Sci. Appl.
**2018**, 7, 17146. [Google Scholar] [CrossRef] [PubMed][Green Version] - Li, J.; Tu, J.J.; Birman, J.L. Raman scattering using vortex light. J. Phys. Chem. Solids
**2015**, 77, 117–121. [Google Scholar] [CrossRef] - Forbes, K.A. Raman optical activity using twisted photons. Phys. Rev. Lett.
**2019**, 122, 103201. [Google Scholar] [CrossRef] [PubMed][Green Version] - Forbes, K.A.; Andrews, D.L. Orbital angular momentum of twisted light: Chirality and optical activity. J. Phys. Photonics
**2021**, 3, 022007. [Google Scholar] [CrossRef] - Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1995. [Google Scholar]
- van Enk, S.J.; Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular-momentum of radiation-fields. J. Mod. Opt.
**1994**, 41, 963–977. [Google Scholar] [CrossRef] - Andrews, D.L.; Dávila Romero, L.C.; Babiker, M. On optical vortex interactions with chiral matter. Opt. Commun.
**2004**, 237, 133–139. [Google Scholar] [CrossRef][Green Version] - Araoka, F.; Verbiest, T.; Clays, K.; Persoons, A. Interactions of twisted light with chiral molecules: An experimental investigation. Phys. Rev. A
**2005**, 71, 055401. [Google Scholar] [CrossRef] - Van Veenendaal, M.; McNulty, I. Prediction of strong dichroism induced by x rays carrying orbital momentum. Phys. Rev. Lett.
**2007**, 98, 157401. [Google Scholar] [CrossRef] [PubMed][Green Version] - Löffler, W.; Broer, D.; Woerdman, J. Circular dichroism of cholesteric polymers and the orbital angular momentum of light. Phys. Rev. A
**2011**, 83, 065801. [Google Scholar] [CrossRef][Green Version] - Toyoda, K.; Miyamoto, K.; Aoki, N.; Morita, R.; Omatsu, T. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett.
**2012**, 12, 3645–3649. [Google Scholar] [CrossRef] [PubMed] - Lowney, J.; Roger, T.; Faccio, D.; Wright, E.M. Dichroism for orbital angular momentum using parametric amplification. Phys. Rev. A
**2014**, 90, 053828. [Google Scholar] [CrossRef][Green Version] - Wu, T.; Wang, R.; Zhang, X. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep.
**2015**, 5, 18003. [Google Scholar] [CrossRef][Green Version] - Forbes, K.A.; Andrews, D.L. Optical orbital angular momentum: Twisted light and chirality. Opt. Lett.
**2018**, 43, 435–438. [Google Scholar] [CrossRef] - Samlan, C.T.; Suna, R.R.; Naik, D.N.; Viswanathan, N.K. Spin-orbit beams for optical chirality measurement. Appl. Phys. Lett.
**2018**, 112, 031101. [Google Scholar] [CrossRef][Green Version] - Alpeggiani, F.; Bliokh, K.Y.; Nori, F.; Kuipers, L. Electromagnetic helicity in complex media. Phys. Rev. Lett.
**2018**, 120, 243605. [Google Scholar] [CrossRef][Green Version] - Woźniak, P.; De Leon, I.; Höflich, K.; Leuchs, G.; Banzer, P. Interaction of light carrying orbital angular momentum with a chiral dipolar scatterer. Optica
**2019**, 6, 961–965. [Google Scholar] [CrossRef] - Babiker, M.; Andrews, D.L.; Lembessis, V.E. Atoms in complex twisted light. J. Opt.
**2019**, 21, 013001. [Google Scholar] [CrossRef] - Bialynicki-Birula, I.; Bialynicka-Birula, Z. Why photons cannot be sharply localized. Phys. Rev. A
**2009**, 79, 032112. [Google Scholar] [CrossRef] - Franke-Arnold, S.; Barnett, S.M.; Yao, E.; Leach, J.; Courtial, J.; Padgett, M. Uncertainty principle for angular position and angular momentum. New J. Phys.
**2004**, 6, 103. [Google Scholar] [CrossRef][Green Version] - Andrews, D.L.; Forbes, K.A. Quantum features in the orthogonality of optical modes for structured and plane-wave light. Opt. Lett.
**2018**, 43, 3249–3252. [Google Scholar] [CrossRef] - Berry, M.; Dennis, M. Quantum cores of optical phase singularities. J. Opt. A Pure Appl. Opt.
**2004**, 6, S178. [Google Scholar] [CrossRef] - Barnett, S.M. On the quantum core of an optical vortex. J. Mod. Opt.
**2008**, 55, 2279–2292. [Google Scholar] [CrossRef] - Goldberg, A.Z.; de la Hoz, P.; Björk, G.; Klimov, A.B.; Grassl, M.; Leuchs, G.; Sánchez-Soto, L.L. Quantum concepts in optical polarization. Adv. Opt. Photon.
**2021**, 13, 1–73. [Google Scholar] [CrossRef] - Andrews, D.; Davila Romero, L.; Babiker, M. Twisted laser beams and their optical interactions with chiral matter. In Trends in Chemical Physics Research; Linke, A.N., Ed.; Nova Science Pub Inc.: Hauppauge, NY, USA, 2006; pp. 155–176. [Google Scholar]
- Greenberg, O. Why is CPT Fundamental? Found. Phys.
**2006**, 36, 1535–1553. [Google Scholar] [CrossRef][Green Version] - Kaplan, A.D.; Tsankov, T.D. CPT invariance in classical electrodynamics. Eur. J. Phys.
**2017**, 38, 065205. [Google Scholar] [CrossRef][Green Version] - Lehnert, R. CPT symmetry and its violation. Symmetry
**2016**, 8, 114. [Google Scholar] [CrossRef][Green Version] - Bender, C.M. Introduction to PT-symmetric quantum theory. Contemp. Phys.
**2005**, 46, 277–292. [Google Scholar] [CrossRef][Green Version] - Peřina, J., Jr.; Lukš, A.; Kalaga, J.K.; Leoński, W.; Miranowicz, A. Nonclassical light at exceptional points of a quantum PT-symmetric two-mode system. Phys. Rev. A
**2019**, 100, 053820. [Google Scholar] [CrossRef][Green Version] - Arkhipov, I.I.; Miranowicz, A.; Minganti, F.; Nori, F. Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between $\mathcal{P}$$\mathcal{T}$ and anti-$\mathcal{P}$$\mathcal{T}$ symmetries. Phys. Rev. A
**2020**, 102, 033715. [Google Scholar] [CrossRef] - Downing, C.A.; Zueco, D.; Martin-Moreno, L. Chiral current circulation and PT symmetry in a trimer of oscillators. ACS Photonics
**2020**, 7, 5401–5414. [Google Scholar] [CrossRef] - Ding, L.; Shi, K.; Zhang, Q.; Shen, D.; Zhang, X.; Zhang, W. Experimental determination of P T-Symmetric exceptional points in a single trapped ion. Phys. Rev. Lett.
**2021**, 126, 083604. [Google Scholar] [CrossRef] - Andrews, D.L. Quantum formulation for nanoscale optical and material chirality: Symmetry issues, space and time parity, and observables. J. Opt.
**2018**, 20, 033003. [Google Scholar] [CrossRef] - Andrews, D.L. Symmetries, conserved properties, tensor representations, and irreducible forms in molecular quantum electrodynamics. Symmetry
**2018**, 10, 298. [Google Scholar] [CrossRef][Green Version] - Power, E.A. Introductory Quantum Electrodynamics; American Elsevier Pub. Co.: New York, NY, USA, 1965. [Google Scholar]
- Barron, L.D. Molecular Light Scattering and Optical Activity; Cambridge University Press: Cambridge, UK, 2004; Volume 2. [Google Scholar]
- Coles, M.M.; Andrews, D.L. Chirality and angular momentum in optical radiation. Phys. Rev. A
**2012**, 85, 063810. [Google Scholar] [CrossRef][Green Version] - Bradshaw, D.S.; Leeder, J.M.; Coles, M.M.; Andrews, D.L. Signatures of material and optical chirality: Origins and measures. Chem. Phys. Lett.
**2015**, 626, 106–110. [Google Scholar] [CrossRef][Green Version] - Noether, E. Invariante variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen, Math-Phys. Klasse
**1918**, 235–257. [Google Scholar] - Jackson, J.D. Classical Electrodynamics; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cameron, R.P.; Barnett, S.M. Electric–magnetic symmetry and Noether’s theorem. New J. Phys.
**2012**, 14, 123019. [Google Scholar] [CrossRef] - Barnett, S.M.; Cameron, R.P.; Yao, A.M. Duplex symmetry and its relation to the conservation of optical helicity. Phys. Rev. A
**2012**, 86, 013845. [Google Scholar] [CrossRef] - Lock, M.P.E.; Andrews, D.L.; Jones, G.A. On the nature of long range electronic coupling in a medium: Distance and orientational dependence for chromophores in molecular aggregates. J. Chem. Phys.
**2014**, 140, 044103. [Google Scholar] [CrossRef] [PubMed][Green Version] - Andrews, D.L. Photon-based and classical descriptions in nanophotonics: A review. J. Nanophoton.
**2014**, 8, 081599. [Google Scholar] [CrossRef][Green Version] - Karimi, E.; Boyd, R.W.; de la Hoz, P.; de Guise, H.; Řeháček, J.; Hradil, Z.; Aiello, A.; Leuchs, G.; Sánchez-Soto, L.L. Radial quantum number of Laguerre-Gauss modes. Phys. Rev. A
**2014**, 89, 063813. [Google Scholar] [CrossRef][Green Version] - Simon, D.S. Bessel beams, self-healing, and diffraction-free propagation. In A Guided Tour of Light Beams, 2nd ed.; IOP Publishing: Bristol, UK, 2020; pp. 5-1–5-22. [Google Scholar]
- Dávila Romero, L.C.; Andrews, D.L.; Babiker, M. A quantum electrodynamics framework for the nonlinear optics of twisted beams. J. Opt. B Quantum Semiclass. Opt.
**2002**, 4, S66–S72. [Google Scholar] [CrossRef] - Power, E.A.; Thirunamachandran, T. Quantum electrodynamics with nonrelativistic sources. II. Maxwell fields in the vicinity of a molecule. Phys. Rev. A
**1983**, 28, 2663–2670. [Google Scholar] [CrossRef] - Craig, D.P.; Thirunamachandran, T. Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions; Dover Publications: Mineola, NY, USA, 1998. [Google Scholar]
- Allen, L.; Padgett, M.J. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun.
**2000**, 184, 67–71. [Google Scholar] [CrossRef] - Berry, M.; McDonald, K. Exact and geometrical optics energy trajectories in twisted beams. J. Opt. A Pure Appl. Opt.
**2008**, 10, 035005. [Google Scholar] [CrossRef] - Heitler, W. The Quantum Theory of Radiation; Dover Publications: New York, NY, USA, 1984. [Google Scholar]
- Barnett, S.; Pegg, D. Phase in quantum optics. J. Phys. A Math. Gen.
**1986**, 19, 3849. [Google Scholar] [CrossRef] - Pegg, D.T.; Vaccaro, J.A.; Barnett, S.M. Quantum-optical phase and canonical conjugation. J. Mod. Opt.
**1990**, 37, 1703–1710. [Google Scholar] [CrossRef] - Barnett, S.M.; Vaccaro, J.A. The Quantum Phase Operator: A Review; Taylor & Francis: Abingdon, UK, 2007. [Google Scholar]
- Coles, M.M. An upper bound on the rate of information transfer in optical vortex beams. Laser Phys. Lett.
**2018**, 15, 095202. [Google Scholar] [CrossRef][Green Version] - Andrews, D.L.; Babiker, M. The Angular Momentum of Light; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bekshaev, A.Y.; Soskin, M.; Vasnetsov, M.V. Paraxial Light Beams with Angular Momentum; Nova Science: New York, NY, USA, 2008. [Google Scholar]
- Nieminen, T.A.; Stilgoe, A.B.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Angular momentum of a strongly focused Gaussian beam. J. Opt. A Pure Appl. Opt.
**2008**, 10, 115005. [Google Scholar] [CrossRef] - Zangwill, A. Modern Electrodynamics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Forbes, K.A.; Green, D.; Jones, G.A. Relevance of longitudinal fields of paraxial optical vortices. J. Opt.
**2021**, 23, 075401. [Google Scholar] [CrossRef] - Bliokh, K.Y.; Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep.
**2015**, 592, 1–38. [Google Scholar] [CrossRef][Green Version] - Neugebauer, M.; Bauer, T.; Aiello, A.; Banzer, P. Measuring the transverse spin density of light. Phys. Rev. Lett.
**2015**, 114, 063901. [Google Scholar] [CrossRef][Green Version] - Barnett, S.M.; Allen, L. Orbital angular momentum and nonparaxial light beams. Opt. Commun.
**1994**, 110, 670–678. [Google Scholar] [CrossRef] - Bliokh, K.Y.; Alonso, M.A.; Ostrovskaya, E.A.; Aiello, A. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys. Rev. A
**2010**, 82, 063825. [Google Scholar] [CrossRef][Green Version] - Bekshaev, A.; Bliokh, K.Y.; Soskin, M. Internal flows and energy circulation in light beams. J. Opt.
**2011**, 13, 053001. [Google Scholar] [CrossRef][Green Version] - Bliokh, K.Y.; Rodríguez-Fortuño, F.; Nori, F.; Zayats, A.V. Spin-orbit interactions of light. Nat. Photonics
**2015**, 9, 796–808. [Google Scholar] [CrossRef] - Courtial, J.; Padgett, M.J. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. Opt. Commun.
**2000**, 173, 269–274. [Google Scholar] [CrossRef] - Volyar, A.V.; Shvedov, V.G.; Fadeeva, T.A. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Opt. Spectrosc.
**2001**, 90, 93–100. [Google Scholar] [CrossRef] - Zhao, Y.; Edgar, J.S.; Jeffries, G.D.; McGloin, D.; Chiu, D.T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett.
**2007**, 99, 073901. [Google Scholar] [CrossRef] [PubMed] - Monteiro, P.B.; Neto, P.A.M.; Nussenzveig, H.M. Angular momentum of focused beams: Beyond the paraxial approximation. Phys. Rev. A
**2009**, 79, 033830. [Google Scholar] [CrossRef][Green Version] - Sheppard, C.J. Focusing of vortex beams: Lommel treatment. J. Opt. A Pure Appl. Opt.
**2014**, 31, 644–651. [Google Scholar] [CrossRef] [PubMed] - Bliokh, K.Y.; Ostrovskaya, E.A.; Alonso, M.A.; Rodríguez-Herrera, O.G.; Lara, D.; Dainty, C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express
**2011**, 19, 26132–26149. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bouchard, F.; De Leon, I.; Schulz, S.A.; Upham, J.; Karimi, E.; Boyd, R.W. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett.
**2014**, 105, 101905. [Google Scholar] [CrossRef][Green Version] - Marrucci, L.; Manzo, C.; Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett.
**2006**, 96, 163905. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ren, H.; Gu, M. Angular momentum-reversible near-unity bisignate circular dichroism. Laser Photon. Rev.
**2018**, 12, 1700255. [Google Scholar] [CrossRef] - Kaviani, H.; Ghobadi, R.; Behera, B.; Wu, M.; Hryciw, A.; Vo, S.; Fattal, D.; Barclay, P. Optomechanical detection of light with orbital angular momentum. Opt. Express
**2020**, 28, 15482–15496. [Google Scholar] [CrossRef] - Xiong, H.; Huang, Y.-M.; Wu, Y. Laguerre-Gaussian optical sum-sideband generation via orbital angular momentum exchange. Phys. Rev. A
**2021**, 103, 043506. [Google Scholar] [CrossRef] - Dholakia, K.; Simpson, N.B.; Padgett, M.J.; Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A
**1996**, 54, R3742–R3745. [Google Scholar] [CrossRef] - Courtial, J.; Dholakia, K.; Allen, L.; Padgett, M.J. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes. Phys. Rev. A
**1997**, 56, 4193–4196. [Google Scholar] [CrossRef] - Gariepy, G.; Leach, J.; Kim, K.T.; Hammond, T.J.; Frumker, E.; Boyd, R.W.; Corkum, P.B. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett.
**2014**, 113, 153901. [Google Scholar] [CrossRef] [PubMed] - Allen, L.; Padgett, M.J.; Babiker, M. The orbital angular momentum of light. Prog. Opt.
**1999**, 39, 291–372. [Google Scholar] - Galvez, E.J.; Khadka, S.; Schubert, W.H.; Nomoto, S. Poincaré-beam patterns produced by nonseparable superpositions of Laguerre–Gauss and polarization modes of light. Appl. Opt.
**2012**, 51, 2925–2934. [Google Scholar] [CrossRef][Green Version] - Khajavi, B.; Galvez, E.J. Determining topological charge of an optical beam using a wedged optical flat. Opt. Lett.
**2017**, 42, 1516–1519. [Google Scholar] [CrossRef] - Pan, S.; Pei, C.; Liu, S.; Wei, J.; Wu, D.; Liu, Z.; Yin, Y.; Xia, Y.; Yin, J. Measuring orbital angular momentums of light based on petal interference patterns. OSA Contin.
**2018**, 1, 451–461. [Google Scholar] [CrossRef][Green Version] - Lan, B.; Liu, C.; Rui, D.; Chen, M.; Shen, F.; Xian, H. The topological charge measurement of the vortex beam based on dislocation self-reference interferometry. Phys. Scr.
**2019**, 94, 055502. [Google Scholar] [CrossRef] - Barnett, S.M.; Allen, L.; Cameron, R.P.; Gilson, C.R.; Padgett, M.J.; Speirits, F.C.; Yao, A.M. On the natures of the spin and orbital parts of optical angular momentum. J. Opt.
**2016**, 18, 064004. [Google Scholar] [CrossRef] - Fernandez-Corbaton, I. A conformally invariant derivation of average electromagnetic helicity. Symmetry
**2019**, 11, 1427. [Google Scholar] [CrossRef][Green Version] - Lipkin, D.M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys.
**1964**, 5, 696–700. [Google Scholar] [CrossRef] - Fushchich, W.; Nikitin, A. The complete sets of conservation laws for the electromagnetic field. J. Phys. A Math. Gen.
**1992**, 25, L231–L233. [Google Scholar] [CrossRef] - Anco, S.C.; Pohjanpelto, J. Classification of local conservation laws of Maxwell′s equations. Acta Appl. Math.
**2001**, 69, 285–327. [Google Scholar] [CrossRef] - Bliokh, K.Y.; Bekshaev, A.Y.; Nori, F. Dual electromagnetism: Helicity, spin, momentum and angular momentum. New J. Phys.
**2013**, 15, 033026. [Google Scholar] [CrossRef] - Philbin, T.G. Lipkin’s conservation law, Noether’s theorem, and the relation to optical helicity. Phys. Rev. A
**2013**, 87, 043843. [Google Scholar] [CrossRef][Green Version] - Bliokh, K.Y.; Nori, F. Characterizing optical chirality. Phys. Rev. A
**2011**, 83, 021803. [Google Scholar] [CrossRef][Green Version] - Nienhuis, G. Conservation laws and symmetry transformations of the electromagnetic field with sources. Phys. Rev. A
**2016**, 93, 023840. [Google Scholar] [CrossRef][Green Version] - Crimin, F.; Mackinnon, N.; Götte, J.B.; Barnett, S.M. Optical helicity and chirality: Conservation and sources. Appl. Sci.
**2019**, 9, 828. [Google Scholar] [CrossRef][Green Version] - Forbes, K.A.; Jones, G.A. Optical vortex dichroism in chiral particles. Phys. Rev. A
**2021**, 103, 053515. [Google Scholar] [CrossRef] - Natarajan, R.; Basak, S.C. Numerical characterization of molecular chirality of organic compounds. Curr. Comp. Aid. Drug Des.
**2009**, 5, 13–22. [Google Scholar] [CrossRef] - Andrews, D.L.; Coles, M.M. Measures of chirality and angular momentum in the electromagnetic field. Opt. Lett.
**2012**, 37, 3009–3011. [Google Scholar] [CrossRef] [PubMed] - Ladd, M. Symmetry of Crystals and Molecules; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Babiker, M.; Bennett, C.R.; Andrews, D.L.; Dávila Romero, L.C. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett.
**2002**, 89, 143601. [Google Scholar] [CrossRef] - Lloyd, S.; Babiker, M.; Yuan, J. Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter. Phys. Rev. Lett.
**2012**, 108, 074802. [Google Scholar] [CrossRef] [PubMed] - Lembessis, V.E.; Babiker, M. Enhanced quadrupole effects for atoms in optical vortices. Phys. Rev. Lett.
**2013**, 110, 083002. [Google Scholar] [CrossRef] - Mondal, P.K.; Deb, B.; Majumder, S. Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules. Phys. Rev. A
**2014**, 89, 063418. [Google Scholar] [CrossRef][Green Version] - Afanasev, A.; Carlson, C.E.; Mukherjee, A. High-multipole excitations of hydrogen-like atoms by twisted photons near a phase singularity. J. Opt.
**2016**, 18, 074013. [Google Scholar] [CrossRef][Green Version] - Schmiegelow, C.T.; Schulz, J.; Kaufmann, H.; Ruster, T.; Poschinger, U.G.; Schmidt-Kaler, F. Transfer of optical orbital angular momentum to a bound electron. Nat. Commun.
**2016**, 7, 12998. [Google Scholar] [CrossRef] - Sakai, K.; Yamamoto, T.; Sasaki, K. Nanofocusing of structured light for quadrupolar light-matter interactions. Sci. Rep.
**2018**, 8, 7746. [Google Scholar] [CrossRef][Green Version] - Schulz, S.-L.; Peshkov, A.; Müller, R.; Lange, R.; Huntemann, N.; Tamm, C.; Peik, E.; Surzhykov, A. Generalized excitation of atomic multipole transitions by twisted light modes. Phys. Rev. A
**2020**, 102, 012812. [Google Scholar] [CrossRef] - Forbes, K.A. Nonlinear chiral molecular photonics using twisted light: Hyper-Rayleigh and hyper-Raman optical activity. J. Opt.
**2020**, 22, 095401. [Google Scholar] [CrossRef] - Bougouffa, S.; Babiker, M. Atom trapping and dynamics in the interaction of optical vortices with quadrupole-active transitions. Phys. Rev. A
**2020**, 101, 043403. [Google Scholar] [CrossRef][Green Version] - Forbes, K.A.; Andrews, D.L. Spin-orbit interactions and chiroptical effects engaging orbital angular momentum of twisted light in chiral and achiral media. Phys. Rev. A
**2019**, 99, 023837. [Google Scholar] [CrossRef][Green Version] - Forbes, K.A.; Andrews, D.L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res.
**2019**, 1, 033080. [Google Scholar] [CrossRef][Green Version] - Coles, M.M.; Williams, M.D.; Saadi, K.; Bradshaw, D.S.; Andrews, D.L. Chiral nanoemitter array: A launchpad for optical vortices. Laser Photon. Rev.
**2013**, 7, 1088–1092. [Google Scholar] [CrossRef] - Williams, M.D.; Coles, M.M.; Saadi, K.; Bradshaw, D.S.; Andrews, D.L. Optical vortex generation from molecular chromophore arrays. Phys. Rev. Lett.
**2013**, 111, 153603. [Google Scholar] [CrossRef][Green Version] - Williams, M.D.; Coles, M.M.; Bradshaw, D.S.; Andrews, D.L. Direct generation of optical vortices. Phys. Rev. A
**2014**, 89, 033837. [Google Scholar] [CrossRef][Green Version] - Kettle, S.F.A. Symmetry and Structure: Readable Group Theory for Chemists; Wiley: Chichester, UK, 2008. [Google Scholar]
- Ludwig, W.; Falter, C. Symmetries in Physics: Group Theory Applied to Physical Problems; Springer Science & Business Media: Berlin, Germany, 2012; Volume 64. [Google Scholar]
- Wang, W.; Gozali, R.; Shi, L.; Lindwasser, L.; Alfano, R. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett.
**2016**, 41, 2069–2072. [Google Scholar] [CrossRef] - Shi, L.; Lindwasser, L.; Wang, W.; Alfano, R.; Rodríguez-Contreras, A. Propagation of Gaussian and Laguerre-Gaussian vortex beams through mouse brain tissue. J. Biophotonics
**2017**, 10, 1756–1760. [Google Scholar] [CrossRef] - Malik, M.; O’Sullivan, M.; Rodenburg, B.; Mirhosseini, M.; Leach, J.; Lavery, M.P.; Padgett, M.J.; Boyd, R.W. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt. Express
**2012**, 20, 13195–13200. [Google Scholar] [CrossRef][Green Version] - Gu, Y. Statistics of optical vortex wander on propagation through atmospheric turbulence. J. Opt. Soc. Am. A
**2013**, 30, 708–716. [Google Scholar] [CrossRef] - Mirhosseini, M.; Rodenburg, B.; Malik, M.; Boyd, R.W. Free-space communication through turbulence: A comparison of plane-wave and orbital-angular-momentum encodings. J. Mod. Opt.
**2014**, 61, 43–48. [Google Scholar] [CrossRef][Green Version] - Li, L.; Xie, G.; Ren, Y.; Ahmed, N.; Huang, H.; Zhao, Z.; Liao, P.; Lavery, M.P.; Yan, Y.; Bao, C. Orbital-angular-momentum-multiplexed free-space optical communication link using transmitter lenses. Appl. Opt.
**2016**, 55, 2098–2103. [Google Scholar] [CrossRef][Green Version] - Li, L.; Zhang, R.; Liao, P.; Cao, Y.; Song, H.; Zhao, Y.; Du, J.; Zhao, Z.; Liu, C.; Pang, K. Mitigation for turbulence effects in a 40-Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Opt. Lett.
**2019**, 44, 5181–5184. [Google Scholar] [CrossRef] - Norrman, A.; Friberg, A.T.; Leuchs, G. Vector-light quantum complementarity and the degree of polarization. Optica
**2020**, 7, 93–97. [Google Scholar] [CrossRef] - Wang, J.; Castellucci, F.; Franke-Arnold, S. Vectorial light–matter interaction: Exploring spatially structured complex light fields. AVS Quantum Sci.
**2020**, 2, 031702. [Google Scholar] [CrossRef] - Hu, X.-B.; Perez-Garcia, B.; Rodríguez-Fajardo, V.; Hernandez-Aranda, R.I.; Forbes, A.; Rosales-Guzmán, C. Free-space local nonseparability dynamics of vector modes. Photonics Res.
**2021**, 9, 439–445. [Google Scholar] [CrossRef] - Milione, G.; Sztul, H.I.; Nolan, D.A.; Alfano, R.R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett.
**2011**, 107, 053601. [Google Scholar] [CrossRef] [PubMed] - Naidoo, D.; Roux, F.S.; Dudley, A.; Litvin, I.; Piccirillo, B.; Marrucci, L.; Forbes, A. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics
**2016**, 10, 327–332. [Google Scholar] [CrossRef][Green Version] - Wang, J.; Wang, L.; Xin, Y. Generation of full Poincare beams on arbitrary order Poincare sphere. Curr. Opt. Photonics
**2017**, 1, 631–636. [Google Scholar] - Woźniak, W.A.; Kurzynowski, P.; Popiołek-Masajada, A. Polarization vortices as a superposition of orthogonal phase vortices. Opt. Commun.
**2019**, 441, 155–159. [Google Scholar] [CrossRef] - Saito, S. Poincaré rotator for vortexed photons. Front. Phys.
**2021**, 9, 646228. [Google Scholar] [CrossRef] - Freund, I. Polarization flowers. Opt. Commun.
**2001**, 199, 47–63. [Google Scholar] [CrossRef] - Boyd, R.W.; Padgett, M.J. Quantum mechanical properties of light fields carrying orbital angular momentum. In Optics in Our Time; Al-Amri, M.D., El-Gomati, M.M., Zubairy, M.S., Eds.; Springer: Cham, Switzerland, 2016; pp. 435–454. [Google Scholar]
- Xie, G.; Li, L.; Ren, Y.; Huang, H.; Yan, Y.; Ahmed, N.; Zhao, Z.; Lavery, M.P.J.; Ashrafi, N.; Ashrafi, S.; et al. Performance metrics and design considerations for a free-space optical orbital-angular-momentum-multiplexed communication link. Optica
**2015**, 2, 357–365. [Google Scholar] [CrossRef][Green Version] - Wang, J. Advances in communications using optical vortices. Photonics Res.
**2016**, 4, B14–B28. [Google Scholar] [CrossRef] - Tyler, G.A.; Boyd, R.W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Opt. Lett.
**2009**, 34, 142–144. [Google Scholar] [CrossRef] - Li, J.; Chen, X.; McDuffie, S.; Najjar, M.A.M.; Rafsanjani, S.M.H.; Korotkova, O. Mitigation of atmospheric turbulence with random light carrying OAM. Opt. Commun.
**2019**, 446, 178–185. [Google Scholar] [CrossRef] - Lavery, M.P.; Peuntinger, C.; Günthner, K.; Banzer, P.; Elser, D.; Boyd, R.W.; Padgett, M.J.; Marquardt, C.; Leuchs, G. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv.
**2017**, 3, e1700552. [Google Scholar] [CrossRef][Green Version] - Bobkova, V.; Stegemann, J.; Droop, R.; Otte, E.; Denz, C. Optical grinder: Sorting of trapped particles by orbital angular momentum. Opt. Express
**2021**, 29, 12967–12975. [Google Scholar] [CrossRef] - Bianchi, S.; Vizsnyiczai, G.; Ferretti, S.; Maggi, C.; Di Leonardo, R. An optical reaction micro-turbine. Nat. Commun.
**2018**, 9, 1–6. [Google Scholar] - Shen, Z.; Xiang, Z.; Wang, Z.; Shen, Y.; Zhang, B. Optical spanner for nanoparticle rotation with focused optical vortex generated through a Pancharatnam–Berry phase metalens. Appl. Opt.
**2021**, 60, 4820–4826. [Google Scholar] [CrossRef] - Otte, E.; Denz, C. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev.
**2020**, 7, 041308. [Google Scholar] [CrossRef] - Syubaev, S.; Zhizhchenko, A.; Kuchmizhak, A.; Porfirev, A.; Pustovalov, E.; Vitrik, O.; Kulchin, Y.; Khonina, S.; Kudryashov, S. Direct laser printing of chiral plasmonic nanojets by vortex beams. Opt. Express
**2017**, 25, 10214–10223. [Google Scholar] [CrossRef] [PubMed][Green Version] - Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv.
**2016**, 2, e1501349. [Google Scholar] [CrossRef][Green Version] - Wang, S.; Deng, Z.-L.; Cao, Y.; Hu, D.; Xu, Y.; Cai, B.; Jin, L.; Bao, Y.; Wang, X.; Li, X. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics J.
**2018**, 10, 1–9. [Google Scholar] - Sirenko, A.; Marsik, P.; Bernhard, C.; Stanislavchuk, T.; Kiryukhin, V.; Cheong, S.-W. Terahertz vortex beam as a spectroscopic probe of magnetic excitations. Phys. Rev. Lett.
**2019**, 122, 237401. [Google Scholar] [CrossRef][Green Version] - Afanasev, A.; Carlson, C.E.; Solyanik, M. Circular dichroism of twisted photons in non-chiral atomic matter. J. Opt.
**2017**, 19, 105401. [Google Scholar] [CrossRef][Green Version] - Solyanik-Gorgone, M.; Afanasev, A.; Carlson, C.E.; Schmiegelow, C.T.; Schmidt-Kaler, F. Excitation of E1-forbidden atomic transitions with electric, magnetic, or mixed multipolarity in light fields carrying orbital and spin angular momentum. J. Opt. Soc. Am. B
**2019**, 36, 565–574. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Phasor structure of an $\ell $ = 1, p = 0 LG beam, cycling as it propagates; hue denotes the phase, colour intensity the level of irradiance; the latter vanishes along the propagation axis (green arrow) at the phase singularity. The orientation of the local wave-vector (normal to the wavefront surface) is azimuth-dependent, as indicated at positions of opposite phase by red and blue arrows. (

**b**) $\ell $ = 3, p = 0 LG beam, showing the mutually orthogonal disposition of the cylindrical components of a local wave-vector.

**Figure 2.**(

**a**) Colour-continuum representation of the phasor Φ for a vortex at z = 0: (

**a**) topological charge $\ell $ = 1, where phase θ = ϕ; (

**b**) $\ell $ = 2, phase θ = 2ϕ (ϕ = 0 as usual designating the notional x-axis). The phase gradient field, indicated by yellow arrows (twice the magnitude in the latter case), is constant in θ. Any shift ϕ →ϕ + π imparts a change of sign to the phasor in (

**a**), as for all cases of odd $\ell $; the same shift in (

**b**) retains the sign, as is true for all even values of $\ell $. The vector field ${\Phi}^{\prime}$ of the phasor gradient varies non-uniformly in direction, its real and imaginary parts (respectively represented by blue and red arrows) having signs either parallel or antiparallel to the phase gradient, according to the quadrant in (

**a**), and the octant in (

**b**).

**Table 1.**Irreducible representations of the point group ${\mathrm{D}}_{\ell}$ and salient symmetry operations for the real and imaginary parts of the azimuthal phasor of a paraxial optical vortex, and of its vector gradient field for odd topological charge; m denotes any positive integer number of rotations.

${\mathbf{D}}_{\ell}(\mathbf{odd}\ell \ge 3)$ | E | $\ell {\mathbf{C}}_{\ell}^{\mathit{m}\le \ell -1}$ | $\ell {\mathbf{C}}_{2}$ | |
---|---|---|---|---|

A_{1} | +1 | +1 | +1 | $\mathrm{Im}{{\Phi}}_{\ell},\mathrm{Re}{{\mathbf{\Phi}}^{\prime}}_{\ell}$ |

A_{2} | +1 | +1 | −1 | $\mathrm{Re}{{\Phi}}_{\ell},\mathrm{Im}{{\mathbf{\Phi}}^{\prime}}_{\ell}$ |

**Table 2.**Irreducible representations for even topological charge $\ell \ge 4$; all other details as in Table 1.

${\mathbf{D}}_{\ell}(\mathbf{even}\ell \ge 3)$ | E | $\ell {\mathbf{C}}_{\ell}^{\mathit{m}\le \ell -1}$ | $\left(\ell /2\right){\mathbf{C}}_{2}^{\prime}$ | $\left(\ell /2\right){\mathbf{C}}_{2}^{\u2033}$ | |
---|---|---|---|---|---|

A_{1} | +1 | +1 | +1 | +1 | $\mathrm{Re}{{\Phi}}_{\ell}$ |

A_{2} | +1 | +1 | −1 | −1 | $\mathrm{Im}{{\Phi}}_{\ell}$ |

B_{1} | +1 | +1 | +1 | −1 | $\mathrm{Re}{{\mathbf{\Phi}}^{\prime}}_{\ell}$ |

B_{2} | +1 | +1 | −1 | +1 | $\mathrm{Im}{{\mathbf{\Phi}}^{\prime}}_{\ell}$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Andrews, D.L. Symmetry and Quantum Features in Optical Vortices. *Symmetry* **2021**, *13*, 1368.
https://doi.org/10.3390/sym13081368

**AMA Style**

Andrews DL. Symmetry and Quantum Features in Optical Vortices. *Symmetry*. 2021; 13(8):1368.
https://doi.org/10.3390/sym13081368

**Chicago/Turabian Style**

Andrews, David L. 2021. "Symmetry and Quantum Features in Optical Vortices" *Symmetry* 13, no. 8: 1368.
https://doi.org/10.3390/sym13081368