Resummed Quantum Gravity: A Review with Applications
Abstract
1. Introduction
2. Overview of Resummed Quantum Gravity
3. Review of Planck Scale Cosmology and an Estimate of
4. Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berends, F. (ICHEP 1988 Conference Dinner, Munich, Germany). Personal communication, 1988.
- Green, M.B.; Schwarz, J.H. Anomaly Cancellations Supersymmetric D= 10 Gauge Theory and Superstring Theory. Phys. Lett. B 1984, 149, 117. [Google Scholar] [CrossRef]
- Green, M.B.; Schwarz, J.H. Infinity cancellations in SO (32) superstring theory. Phys. Lett. B 1985, 151, 21–25. [Google Scholar] [CrossRef]
- Melnikov, V.N. Theoretical and experimental problems of general relativity and gravitation. Gravity, strings and quantum field theory. In Proceedings of the 11th Conference and International Workshop, GRG 11, Tomsk, Russia, 1–8 July 2002; Available online: https://inspirehep.net/literature/627126 (accessed on 8 July 2002).
- Smolin, L. How far are we from the quantum theory of gravity? arXiv 2003, arXiv:hep-th/0303185. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Grav. 2004, 21, R53. [Google Scholar] [CrossRef]
- Perez, A. Introduction to loop quantum gravity and spin foams. arXiv 2004, arXiv:gr-qc/0409061. [Google Scholar]
- Horava, P. Quantum gravity at a Lifshitz point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Kreimer, D. A remark on quantum gravity. Ann. Phys. 2008, 323, 49. [Google Scholar] [CrossRef][Green Version]
- Kreimer, D. Anatomy of a gauge theory. Ann. Phys. 2006, 321, 2757. [Google Scholar] [CrossRef]
- Weinberg, S.; Hawking, S.W.; Israel, W. General Relativity, an Einstein Centenary Survey; Cambridge Univ. Press: Cambridge, UK, 1979. [Google Scholar]
- Reuter, M. Nonperturbative evolution equation for quantum gravity. Phys. Rev. D 1998, 57, 971. [Google Scholar] [CrossRef]
- Lauscher, O.; Reuter, M. Flow equation of quantum Einstein gravity in a higher-derivative truncation. Phys. Rev. D 2002, 66, 025026. [Google Scholar] [CrossRef]
- Manrique, E.; Reuter, M.; Saueressig, F. Matter induced bimetric actions for gravity. Ann. Phys. 2011, 326, 440. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Renormalization group improved black hole spacetimes. Phys. Rev. D 2000, 62, 043008. [Google Scholar] [CrossRef]
- Litim, D.F. Fixed points of quantum gravity. Phys. Rev. Lett. 2004, 92, 201301. [Google Scholar] [CrossRef]
- Litim, D.F. Optimized renormalization group flows. Phys. Rev. D 2001, 64, 105007. [Google Scholar] [CrossRef]
- Fischer, P.; Litim, D.F. Fixed points of quantum gravity in extra dimensions. Phys. Lett. B 2006, 638, 497. [Google Scholar] [CrossRef]
- Don, D.; Percacci, R. The running gravitational couplings. Class. Quant. Grav. 1998, 15, 3449. [Google Scholar]
- Percacci, R.; Perini, D. Constraints on matter from asymptotic safety. Phys. Rev. D 2003, 67, 081503. [Google Scholar] [CrossRef]
- Percacci, R.; Perini, D. Asymptotic safety of gravity coupled to matter. Phys. Rev. D 2003, 68, 044018. [Google Scholar] [CrossRef]
- Percacci, R. Further evidence for a gravitational fixed point. Phys. Rev. D 2006, 73, 041501. [Google Scholar] [CrossRef]
- Codello, A.; Percacci, R.; Rahmede, C. Ultraviolet properties of f (R)-gravity. Int. J. Mod. Phys. A 2008, 23, 143. [Google Scholar] [CrossRef]
- Wilson, K.G. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B 1971, 4, 3174. [Google Scholar] [CrossRef]
- Wilson, K.G.; Kogut, J. The renormalization group and the ϵ expansion. Phys. Rep. 1974, 12, 75. [Google Scholar] [CrossRef]
- Wegner, F.; Houghton, A. Renormalization group equation for critical phenomena. Phys. Rev. A 1973, 8, 401. [Google Scholar] [CrossRef]
- Weinberg, S. Critical Phenomena for Field Theorists. Erice Subnucl. Phys. 1976, 1. [Google Scholar] [CrossRef]
- Polchinski, J. Renormalization and effective Lagrangians. Nucl. Phys. B 1984, 231, 269. [Google Scholar] [CrossRef]
- Ambjørn, J.; Görlich, A.; Jurkiewicz, J.; Loll, R. Geometry of the quantum universe. Phys. Lett. B 2010, 690, 420. [Google Scholar] [CrossRef][Green Version]
- Yennie, D.R.; Frautschi, S.C.; Suura, H. The infrared divergence phenomena and high-energy processes. Ann. Phys. 1961, 13, 379. [Google Scholar] [CrossRef]
- Mahanthappa, K.T. Multiple production of photons in quantum electrodynamics. Phys. Rev. 1962, 126, 329. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L. Exponentiation of soft photons in Monte Carlo event generators: The case of the Bonneau-Martin cross section. Phys. Rev. 1988, 38, 2897, Erratum in Phys. Rev. D 1989, 39, 1471. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L. Multiphoton Monte Carlo event generator for Bhabha scattering at small angles. Phys. Rev. D 1989, 40, 3582. [Google Scholar] [CrossRef] [PubMed]
- Jadach, S.; Ward, B.F.L. YFS2—The second-order Monte Carlo program for fermion pair production at LEP/SLC, with the initial state radiation of two hard and multiple soft photons. Comp. Phys. Commun. 1990, 56, 351. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. The Monte Carlo program KORALZ, version 3.8, for the lepton or quark pair production at LEP/SLC energies. Comput. Phys. Commun. 1991, 66, 276. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. The Monte Carlo program KORALZ version 4.0 for lepton or quark pair production at LEP/SLC energies. Comput. Phys. Commun. 1994, 79, 503. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. The Monte Carlo program KORALZ, for the lepton or quark pair production at LEP/SLC energies From version 4.0 to version 4.04. Comput. Phys. Commun. 2000, 124, 233. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. The precision Monte Carlo event generator KK for two-fermion final states in e+ e− collisions. Comput. Phys. Commun. 2000, 130, 260. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. Coherent exclusive exponentiation for precision Monte Carlo calculations. Phys. Rev. D 2001, 63, 113009. [Google Scholar] [CrossRef]
- Jadach, S.; Placzek, W.; Ward, B.F.L. BHWIDE 1.00: O (α) YFS exponentiated Monte Carlo for Bhabha scattering at wide angles for LEP1/SLC and LEP2. Phys. Lett. 1997, B390, 298. [Google Scholar] [CrossRef]
- Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L.; Was, Z. Exact O (α) gauge invariant YFS exponentiated Monte Carlo for (un) stable W+ W− production at and beyond LEP2 energies. Phys. Lett. 1998, B417, 326. [Google Scholar] [CrossRef]
- Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L.; Was, Z. Monte Carlo program KoralW 1.42 for all four-fermion final states in e+ e− collisions. Comput. Phys. Commun. 1999, 119, 272. [Google Scholar] [CrossRef]
- Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L.; Was, Z. The Monte Carlo event generator YFSWW3 version 1.16 for W-pair production and decay at LEP2/LC energies. Comput. Phys. Commun. 2001, 140, 432–474. [Google Scholar] [CrossRef]
- Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L.; Was, Z. Final-state radiative effects for the exact O (α) Yennie-Frautschi-Suura exponentiated (un) stable W+ W− production at and beyond CERN LEP2 energies. Phys. Rev. 2000, D61, 113010. [Google Scholar]
- Jadach, S.; Płaczek, W.; Skrzypek, M.; Ward, B.F.L.; Was, Z. Precision predictions for (un) stable W+ W− pair production at and beyond CERN LEP2 energies. Phys. Rev. 2002, D65, 093010. [Google Scholar]
- Weinberg, S. Infrared photons and gravitons. Phys. Rev. 1965, 140, B516. [Google Scholar] [CrossRef]
- Ward, B.F.L. Exact quantum loop results in the theory of general relativity. Open Nucl. Part Phys. J. 2009, 2, 1. [Google Scholar] [CrossRef][Green Version]
- Ward, B.F.L. Quantum corrections to Newton’s law. Mod. Phys. Lett. A 2002, 17, 2371. [Google Scholar] [CrossRef]
- Ward, B.F.L. Massive elementary particles and black holes. Mod. Phys. Lett. A 2004, 19, 143. [Google Scholar] [CrossRef]
- Ward, B.F.L. Planck scale cosmology in resummed quantum gravity. Mod. Phys. Lett. A 2008, 23, 3299. [Google Scholar] [CrossRef]
- Linde, A. Inflationary cosmology. Lect. Notes Phys. 2008, 738, 1. [Google Scholar]
- Guth, A.H.; Kaiser, D.I. Inflationary cosmology: Exploring the universe from the smallest to the largest scales. Science 2005, 307, 884. [Google Scholar] [CrossRef] [PubMed]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Cosmology of the Planck era from a renormalization group for quantum gravity. Phys. Rev. D 2002, 65, 043508. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Primordial entropy production and Λ-driven inflation from quantum Einstein gravity. J. Phys. Conf. Ser. 2008, 140, 012008. [Google Scholar] [CrossRef]
- Shapiro, I.L.; Sola, J. Scaling behavior of the cosmological constant and the possible existence of new forces and new light degrees of freedom. Phys. Lett. B 2000, 475, 236. [Google Scholar] [CrossRef]
- Ward, B.F.L. An estimate of Λ in resummed quantum gravity in the context of asymptotic safety. Phys. Dark Univ. 2013, 2, 97. [Google Scholar] [CrossRef]
- Ward, B.F.L. Prediction for the cosmological constant and constraints on SUSY GUTs in resummed quantum gravity. Int. J. Mod. Phys. A 2018, 33, 1830028. [Google Scholar] [CrossRef]
- Ward, B.F.L. Role of IR-Improvement in Precision LHC/FCC Physics and in Quantum Gravity. arXiv 2020, arXiv:2002.01850. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Amsler, C.; Doser, M.; Bloch, P.; Ceccucci, A.; Giudice, G.F.; Höcker, A.; Mangano, M.L.; Masoni, A.; Spanier, S.; Törnqvist, N.A.; et al. Review of particle physics. Phys. Lett. B 2008, 667, 1. [Google Scholar] [CrossRef]
- Ward, B.F.L. Einstein–Heisenberg consistency condition interplay with cosmological constant prediction in resummed quantum gravity. Mod. Phys. Lett. A 2015, 30, 1550206. [Google Scholar] [CrossRef]
- Gross, D.J. SM@50 Symposium; Case Western Reserve University: Cleveland, OH, USA, 2018. [Google Scholar]
- Goldberger, M.L. (Princeton University, Princeton, NJ, USA). Personal communication, 1972.
- Feynman, R.P. Quantum theory of gravitation. Acta Phys. Pol. 1963, 24, 697–722. [Google Scholar]
- Feynman, R.P. Lectures on Gravitation; Moringo, F., Wagner, W., Eds.; Caltech: Pasadena, CA, USA, 1971. [Google Scholar]
- Faddeev, L.D.; Popov, V.N. Perturbation theory for gauge invariant fields. In 50 Years of Yang-Mills Theory; Institute for Theoretical Physics: Kiev, Ukraine, 2005; pp. 40–60. [Google Scholar]
- Faddeev, L.D.; Popov, V.N. Feynman diagrams for the Yang-Mills field. Phys. Lett. B 1967, 25, 29–30. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields, v.1; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Zel’dovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 1968, 11, 381. [Google Scholar] [CrossRef]
- Branchina, V.; Zappala, D.; Gravit, G.R.; Branchina, V.; Zappala, D. Dilution of Zero-Point Energies in the Cosmological Expansion. Mod. Phys. Lett. A 2010, 25, 2305–2312. [Google Scholar]
- Sola, J. Dark energy: A quantum fossil from the inflationary Universe? J. Phys. A 2008, 41, 164066. [Google Scholar] [CrossRef]
- Stiegman, G. Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nucl. Part. Sci. 2007, 57, 463. [Google Scholar] [CrossRef]
- Basilakos, S.; Plionis, M.; Sola, J. Hubble expansion and structure formation in time varying vacuum models. Phys. Rev. D 2009, 80, 083511. [Google Scholar] [CrossRef]
- Grande, J.; Sola, J.; Basilakos, S.; Plionis, M. Hubble expansion and structure formation in the “running FLRW model”of the cosmic evolution. J. Cos. Astropart. Phys. 2011, 1108, 007. [Google Scholar] [CrossRef]
- Fritzsch, H.; Sola, J. Matter non-conservation in the universe and dynamical dark energy. arXiv 2012, arXiv:1202.5097. [Google Scholar] [CrossRef]
- Ratra, B. Restoration of spontaneously broken continuous symmetries in de Sitter spacetime. Phys. Rev. D 1985, 31, 1931. [Google Scholar] [CrossRef] [PubMed]
- Nachtmann, O. Quantum theory in de-Sitter space. Commun. Math. Phys. 1967, 6, 1. [Google Scholar] [CrossRef]
- Boerner, G.; Duerr, H.P. Classical and quantum fields in de Sitter space. Nuovo C 1969, 64, 669. [Google Scholar] [CrossRef]
- Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar field in de Sitter space-time. Ann. Inst. H. Poincare 1968, 9, 109. [Google Scholar]
- Robertson, H.P.; Noonan, T.W. Relativity and Cosmology; Saunders: Philadelphia, PA, USA, 1968. [Google Scholar]
- Jacobs, K. PoS(ICHEP2020), 2021, 022. Available online: https://pos.sissa.it/390/022/ (accessed on 6 August 2020).
- Carlin, R. (Ed.) PoS(ICHEP2020), 2021, 008. Available online: https://pos.sissa.it/390/008/ (accessed on 6 August 2020).
- Dev, P.S.B.; Mohapatra, R.N. Electroweak symmetry breaking and proton decay in S O (10) supersymmetric GUT with TeV W R. Phys. Rev. 2010, 82, 035014. [Google Scholar]
- Thorne, K.S. John Archibald Wheeler: A Biographical Memoir. arXiv 2019, arXiv:1901.06623,. [Google Scholar]
- Gueorguiev, V.G.; Maeder, A. Revisiting the Cosmological Constant Problem within Quantum Cosmology. Universe 2020, 6, 108. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. The growth of the density fluctuations in the scale-invariant vacuum theory. Phys. Dark Univ. 2019, 25, 100315. [Google Scholar] [CrossRef]
- Maeder, A.; Gueorguiev, V.G. Scale-invariant dynamics of galaxies, MOND, dark matter, and the dwarf spheroidals. Mon. Notices Royal Astron. Soc. 2020, 492, 2698–2708. [Google Scholar] [CrossRef]
- Antoniadis, I.; Mottola, E. Four-dimensional quantum gravity in the conformal sector. Phys. Rev. D 1992, 45, 2013. [Google Scholar] [CrossRef]
- Mottola, E. Functional integration over geometries. J. Math. Phys. 1995, 36, 2470. [Google Scholar] [CrossRef]
- Mazur, P.O.; Mottola, E. The path integral measure, conformal factor problem and stability of the ground state of quantum gravity. Nucl. Phys. B 1990, 341, 187. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, B.F.L. Resummed Quantum Gravity: A Review with Applications. Symmetry 2021, 13, 1304. https://doi.org/10.3390/sym13071304
Ward BFL. Resummed Quantum Gravity: A Review with Applications. Symmetry. 2021; 13(7):1304. https://doi.org/10.3390/sym13071304
Chicago/Turabian StyleWard, B. F. L. 2021. "Resummed Quantum Gravity: A Review with Applications" Symmetry 13, no. 7: 1304. https://doi.org/10.3390/sym13071304
APA StyleWard, B. F. L. (2021). Resummed Quantum Gravity: A Review with Applications. Symmetry, 13(7), 1304. https://doi.org/10.3390/sym13071304