Fractional Weighted Ostrowski-Type Inequalities and Their Applications
Abstract
:1. Introduction
2. Main Results
3. Further Results
4. Applications
- Arithmetic mean: .
- p–Logarithmic mean: ,.
5. Conclusions
- A new identity regarding fractional weighted Ostrowski-type is established.
- New fractional weighted Ostrowski-type inequalities for quasi-convex functions using the above identity are deduced.
- Several further results for function with a bounded first derivative are given.
- Some applications to special means are obtained.
- The efficiency of our results is shown.
- As future research, from our results, interested reader can find several new interesting inequalities from many areas of pure and applied sciences. Moreover, they can derive (using our technique) applications to special means for different quasi-convex functions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35, pp. 87–130. [Google Scholar]
- Cesarano, C.; Pierpaolo, N.; Paolo, E.R. Pseudo-Lucas functions of fractional degree and applications. Axioms 2021, 10, 51. [Google Scholar] [CrossRef]
- Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
- Al-luhaibi, M.S. An analytical treatment to fractional Fornberg-Whitham equation. Math. Sci. 2017, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
- Ion, D.A. Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. An. Univ. Craiova Ser. Mat. Inform. 2007, 34, 83–88. [Google Scholar]
- Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. (German) Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Ostrowski-type inequalities. Proc. Amer. Math. Soc. 1995, 123, 3775–3781. [Google Scholar] [CrossRef]
- Awan, M.U.; Akhtar, N.; Kashuri, A.; Noor, M.A.; Chu, Y.M. 2D approximately reciprocal ρ–convex functions and associated integral inequalities. AIMS Math. 2020, 5, 4662–4680. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Wang, S. An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Comput. Math. Appl. 1997, 33, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Kashuri, A.; Liko, R. Generalizations of Hermite–Hadamard and Ostrowski-type inequalities for MTm–preinvex functions. Proyecciones 2017, 36, 45–80. [Google Scholar] [CrossRef] [Green Version]
- Kashuri, A.; Liko, R. Ostrowski-type fractional integral operators for generalized (r, s, m, φ)–preinvex functions. Appl. Appl. Math. 2017, 12, 1017–1035. [Google Scholar] [CrossRef] [Green Version]
- Kashuri, A.; Du, T.S.; Liko, R. On some new integral inequalities concerning twice differentiable generalized relative semi–(m, h)–preinvex mappings. Stud. Univ. Babeş-Bolyai Math. 2019, 64, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Kashuri, A.; Du, T.S.; Baidar, A.W. Quantum Montgomery identity and quantum estimates of Ostrowski-type inequalities. AIMS Math. 2020, 5, 5439–5457. [Google Scholar] [CrossRef]
- Meftah, B. Ostrowski inequality for functions whose first derivatives are s–preinvex in the second sense. Khayyam J. Math. 2017, 3, 61–80. [Google Scholar]
- Meftah, B. Some new Ostrowski’s inequalities for n–times differentiable mappings which are quasi-convex. Facta Univ. Ser. Math. Inform. 2017, 32, 319–327. [Google Scholar]
- Meftah, B. Some new Ostrowski’s inequalities for functions whose nth derivatives are logarithmically convex. Ann. Math. Sil. 2017, 32, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Meftah, B. Some Ostrowski’s inequalities for functions whose nth derivatives are s–convex. An. Univ. Oradea Fasc. Mat. 2018, 25, 185–212. [Google Scholar]
- Meftah, B.; Kashuri, A. Some new type integral inequalities for approximately harmonic h–convex functions. Mat. Bilten. 2020, 44, 13–36. [Google Scholar]
- Sarikaya, M.Z. On the Ostrowski-type integral inequality. Acta Math. Univ. Comenian. (N.S.) 2010, 79, 129–134. [Google Scholar]
- Cortez, M.J.V.; García, C.; Kashuri, A.; Hernández, J.E.H. New Ostrowski-type inequalities for coordinated (s,m)–convex functions in the second sense. Appl. Math. Inf. Sci. 2019, 13, 821–829. [Google Scholar]
- Alomari, M.; Darus, M.; Dragomir, S.S. Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are quasi-convex. Tamkang J. Math. 2010, 41, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA Res. Rep. Coll. 2010, 13, 9. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Almeida, R.; Guzowska, M.; Odzijewicz, T. A remark on local fractional calculus and ordinary derivatives. Open Math. 2016, 14, 1122–1124. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski-type inequalities for generalized Riemann–Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 2017, 20, Art. 58. [Google Scholar]
- Khan, M.B.; Mohammed, P.O.; Noor, B.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
- Kashuri, A.; Rassias, T.M. Some new Ostrowski type integral inequalities via general fractional integrals (Chapter 8). In Computational Mathematics and Variational Analysis; Daras, N., Rassias, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 159, pp. 135–151. [Google Scholar]
- Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
- Meftah, B. Fractional Ostrowski-type inequalities for functions whose first derivatives are ϕ–preinvex. J. Adv. Math. Stud. 2017, 10, 335–347. [Google Scholar]
- Meftah, B. Fractional Ostrowski-type inequalities for functions whose first derivatives are s–preinvex in the second sense. Int. J. Anal. App. 2017, 15, 146–154. [Google Scholar]
- Alqudah, M.A.; Kashuri, A.; Mohammed, P.O.; Raees, M.; Abdeljawad, T.; Anwar, M.; Hamed, Y.S. On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Math. 2021, 6, 4638–4663. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite-Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
- Meftah, B.; Azaizia, A. Fractional Ostrowski-type inequalities for functions whose first derivatives are MT–preinvex. Rev. Matemáticas Univ. Atlántico Páginas 2019, 6, 33–43. [Google Scholar]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. Nonlinear Sys. 2021, 1, 75–94. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, 2020, 148. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Set, E. New inequalities of Ostrowski-type for mappings whose derivatives are s–convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski-type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Baleanu, D.; Kashuri, A.; Mohammed, P.O.; Meftah, B. General Raina fractional integral inequalities on coordinates of convex functions. Adv. Differ. Equ. 2021, 82, 23. [Google Scholar]
- Alb Lupaş, A. Inequalities for Analytic Functions Defined by a Fractional Integral Operator (Chapter 36). In Frontiers in Functional Equations and Analytic Inequalities; Anastassiou, G., Rassias, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 731–745. [Google Scholar]
- Dragomir, S.S.; Cerone, P.; Roumeliotis, J.; Wang, S. A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 1999, 42, 301–314. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry 2021, 13, 968. https://doi.org/10.3390/sym13060968
Kashuri A, Meftah B, Mohammed PO, Lupaş AA, Abdalla B, Hamed YS, Abdeljawad T. Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry. 2021; 13(6):968. https://doi.org/10.3390/sym13060968
Chicago/Turabian StyleKashuri, Artion, Badreddine Meftah, Pshtiwan Othman Mohammed, Alina Alb Lupaş, Bahaaeldin Abdalla, Y. S. Hamed, and Thabet Abdeljawad. 2021. "Fractional Weighted Ostrowski-Type Inequalities and Their Applications" Symmetry 13, no. 6: 968. https://doi.org/10.3390/sym13060968
APA StyleKashuri, A., Meftah, B., Mohammed, P. O., Lupaş, A. A., Abdalla, B., Hamed, Y. S., & Abdeljawad, T. (2021). Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry, 13(6), 968. https://doi.org/10.3390/sym13060968