Next Article in Journal
Hardware in the Loop Topology for an Omnidirectional Mobile Robot Using Matlab in a Robot Operating System Environment
Previous Article in Journal
Local Zeta Functions and Koba–Nielsen String Amplitudes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Weighted Ostrowski-Type Inequalities and Their Applications

by
Artion Kashuri
1,
Badreddine Meftah
2,
Pshtiwan Othman Mohammed
3,*,
Alina Alb Lupaş
4,
Bahaaeldin Abdalla
5,
Y. S. Hamed
6 and
Thabet Abdeljawad
5,7,8,*
1
Department of Mathematics, Faculty of Technical Science, University “Ismail Qemali”, 9400 Vlora, Albania
2
Laboratoire des Télécommunications, Faculté des Sciences et de la Technologie, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
3
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
4
Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania
5
Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
6
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
7
Department of Medical Research, China Medical University, Taichung 40402, Taiwan
8
Department of Computer Science and Information Engineering, Asia University, Taichung 40402, Taiwan
*
Authors to whom correspondence should be addressed.
Symmetry 2021, 13(6), 968; https://doi.org/10.3390/sym13060968
Submission received: 22 February 2021 / Revised: 3 May 2021 / Accepted: 24 May 2021 / Published: 29 May 2021
(This article belongs to the Section Mathematics)

Abstract

:
An important area in the field of applied and pure mathematics is the integral inequality. As it is known, inequalities aim to develop different mathematical methods. Nowadays, we need to seek accurate inequalities for proving the existence and uniqueness of the mathematical methods. The concept of convexity plays a strong role in the field of inequalities due to the behavior of its definition and its properties. Furthermore, there is a strong correlation between convexity and symmetry concepts. Whichever one we work on, we can apply it to the other one due the strong correlation produced between them, especially in the last few years. In this study, by using a new identity, we establish some new fractional weighted Ostrowski-type inequalities for differentiable quasi-convex functions. Further, further results for functions with a bounded first derivative are given. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtain. The obtained results generalize and refine certain known results.

1. Introduction

Computational and Fractional Analysis are nowadays more and more in the center of mathematics and of other related sciences either by themselves because of their rapid development, which is based on very old foundations, or because they cover a great variety of applications in the real world. In current years, fractional calculus ( F C ) applied in many phenomena in applied sciences, fluid mechanics, physics and other biology can be described as very effective using mathematical tools of F C . The fractional derivatives have occurred in many applied sciences equations such as reaction and diffusion processes, system identification, velocity signal analysis, relaxation of damping behaviour fabrics and creeping of polymer composites [1,2,3,4].
Definition 1
([5]). Let I be an interval of real numbers. A function φ : I R is said to be convex, if for all x , y I and all t [ 0 , 1 ] , we have
φ t x + 1 t y t φ x + 1 t φ ( y ) .
The concept of convex functions has been also generalized in diverse manners. One of them is the quasi-convex function defined as follows:
Definition 2
([6]). A function φ : I R is said to be quasi-convex, if
φ ( t x + ( 1 t ) y ) max φ ( x ) , φ ( y )
holds for all x , y I and t [ 0 , 1 ] .
In 1938 Ostrowski ([7]) proved the following Ostrowski inequality:
Theorem 1
([7]). Let φ be a differentiable function defined on the finite interval [ a , b ] , whose derivative is integrable and bounded over [ a , b ] , i . e . , φ : = sup x ( a , b ) φ ( x ) < , then
φ ( x ) 1 b a a b φ ( u ) d u 1 4 + x a + b 2 2 ( b a ) 2 ( b a ) φ .
Several generalizations, improvement, and variants of such type of inequality have been obtained, we refer readers to [8,9,10,11,12,13,14,15,16,17,18,19,20,21] and references therein.
The following notations will be used in the sequel. We denote, respectively I the interior of I and L [ a , b ] the set of all integrable functions on [ a , b ] .
In [22], Alomari et al. gave the following midpoint type inequalities for differentiable quasi-convex.
Theorem 2
([22]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ is quasi-convex on [ a , b ] , then the following inequality holds:
1 b a a b φ ( u ) d u φ a + b 2 b a 8 ( max φ a , φ a + b 2 + max φ a + b 2 , φ b ) .
Theorem 3
([22]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ q is quasi-convex on [ a , b ] , q > 1 with 1 p + 1 q = 1 , then the following inequality holds:
1 b a a b φ ( u ) d u φ a + b 2 b a 4 p + 1 1 p ( max φ a q , φ a + b 2 q 1 q + max φ a + b 2 q , φ b q 1 q ) .
Theorem 4
([22]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ q is quasi-convex on [ a , b ] , q 1 , then the following inequality holds:
1 b a a b φ ( u ) d u φ a + b 2 b a 8 ( max φ a q , φ a + b 2 q 1 q + max φ a + b 2 q , φ b q 1 q ) .
Alomari and Darus in [23] obtained the Ostrowski-type inequalities for differentiable quasi-convex functions:
Theorem 5
([23]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ is quasi-convex on [ a , b ] , then the following inequality holds:
1 b a a b φ ( u ) d u φ x x a 2 2 b a max φ x , φ a + b x 2 2 b a max φ x , φ b .
Theorem 6
([23]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ q is quasi-convex on [ a , b ] , q > 1 with 1 p + 1 q = 1 , then the following inequality holds:
1 b a a b φ ( u ) d u φ x x a p + 1 b a p + 1 1 p max φ x q , φ a q 1 q + b x p + 1 b a p + 1 1 p max φ x q , φ b q 1 q .
Theorem 7
([23]). Let φ : I [ 0 , ) R be a differentiable mapping on I such that φ L [ a , b ] , where a , b I with a < b . If φ q is quasi-convex on [ a , b ] , q 1 , then the following inequality holds:
1 b a a b φ ( u ) d u φ x x a 2 2 b a max φ x q , φ a q 1 q + b x 2 2 b a max φ x q , φ b q 1 q .
Fractional calculus has been widely studied by many researchers over the past decades. In particular, to generalize classic inequalities. Among the best known and use of these fractional integral operators we recall that of Riemann–Liouville.
Definition 3
([24]). Let φ L [ a , b ] . The Riemann–Liouville integrals J a + α φ and J b α φ of order α > 0 with a 0 are defined by
J a + α φ ( x ) = 1 Γ α a x x u α 1 φ ( u ) d u , x > a , J b α φ ( x ) = 1 Γ α x b u x α 1 φ ( u ) d u , b > x ,
respectively, where Γ ( α ) = 0   e u u α 1 d u , is the Gamma function and J a + 0 φ ( x ) = J b 0 φ ( x ) = φ ( x ) .
In so-called fractional calculus, there are not only global derivatives (for example, Riemann–Liouville and Caputo), but also local fractional derivatives (Khalil, Almeida, among others), see [25,26]. Regarding some papers dealing with fractional integral inequalities via different types of fractional integral operators, we refer readers to [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43].
In this paper, we establish a new identity and then apply it to derive new weighted Ostrowski-type inequalities for quasi-convex functions. Further results for functions with a bounded first derivative will be given. In order to illustrate the efficiency of our main results, some applications to special means will be obtain.

2. Main Results

For brevity, we will used in the sequel J = [ a , b ] . In order to find our main results, we need to prove the following lemma.
Lemma 1.
Let φ : J R be differentiable function on J , 0 a < b , and ω : J R a continuous function. If φ , ω L ( J ) , then
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ ,
where
p 1 τ : = τ 1 1 σ α 1 ω σ b + 1 σ x d σ
and
p 2 τ : = τ 1 1 σ α 1 ω σ a + 1 σ x d σ .
Proof. 
We integrate by parts and change the variable u = σ b + 1 σ x to obtain
0 1 p 1 τ φ τ b + 1 τ x d τ = 0 1 τ 1 1 σ α 1 ω σ b + 1 σ x d σ φ τ b + 1 τ x d τ = 1 b x τ 1 1 σ α 1 ω σ b + 1 σ x d σ φ τ b + 1 τ x τ = 0 τ = 1 + 1 b x 0 1 1 τ α 1 ω τ b + 1 τ x φ τ b + 1 τ x d τ = 1 b x 0 1 1 σ α 1 ω σ b + 1 σ x d σ φ x + 1 b x 0 1 1 τ α 1 ω τ b + 1 τ x φ τ b + 1 τ x d τ = 1 b x α + 1 x b b u α 1 ω u d u φ x + 1 b x α + 1 x b b u α 1 ω u φ u d u = Γ α b x α + 1 J x + α ω ( b ) φ x + Γ α b x α + 1 J x + α ω φ ( b ) .
Now, multiplying (4) by b x α + 1 Γ α , we get
b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ = J x + α ω φ ( b ) J x + α ω ( b ) φ x .
Similar work give
0 1 p 2 τ φ τ a + 1 τ x d τ = Γ α x a α + 1 J x α ω ( a ) φ x Γ α x a α + 1 J x α ω φ ( a ) .
Multiplying (6) by x a α + 1 Γ α , we obtain
x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ = J x α ω ( a ) φ x J x α ω φ ( a ) .
By taking the difference between (5) and (7), we get
b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ = J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x ,
which is the desired result. □
Theorem 8.
Consider a differentiable function φ : J R with φ L ( J ) where 0 a < b , and let ω : J R be continuous function. If φ is quasi-convex, then
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 Γ α + 2 max φ x , φ b ω x , b , + x a α + 1 Γ α + 2 max φ x , φ a ω a , x , .
Proof. 
From Lemma 1, properties of modulus and quasi-convexity of φ , we have
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ + x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ b x α + 1 Γ α max φ x , φ b 0 1 τ 1 1 σ α 1 ω σ b + 1 σ x d σ d τ + x a α + 1 Γ α max φ x , φ a 0 1 τ 1 1 σ α 1 ω σ a + 1 σ x d σ d τ b x α + 1 Γ α max φ x , φ b ω x , b , + x a α + 1 Γ α max φ x , φ a ω a , x , 0 1 τ 1 1 σ α 1 d σ d τ = b x α + 1 Γ α + 2 max φ x , φ b ω x , b , + x a α + 1 Γ α + 2 max φ x , φ a ω a , x , .
The proof is completed. □
Corollary 1.
Considering x = a + b 2 in Theorem 8, we obtain
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 b a α + 1 2 α + 1 Γ α + 2 ω a , b , × max φ a + b 2 , φ b + max φ a + b 2 , φ a .
Corollary 2.
Choosing ω u = 1 b a in Theorem 8, we get
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x b x α + 1 Γ α + 2 max φ x , φ b + x a α + 1 Γ α + 2 max φ x , φ a .
Moreover, if we take x = a + b 2 , we obtain
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 b a 4 α + 1 max φ a + b 2 , φ b + max φ a + b 2 , φ a .
Corollary 3.
Let α = 1 in Theorem 8, then
a b ω u φ ( u ) d u a b ω u d u φ x b x 2 2 max φ x , φ b ω x , b , + x a 2 2 max φ x , φ a ω a , x , .
Moreover, for x = a + b 2 , we get
a b ω u φ ( u ) d u a b ω u d u φ a + b 2 b a 2 8 ω a , b , × max φ a + b 2 , φ b + max φ a + b 2 , φ a .
Remark 1.
In Corollary 3, if we choose ω u = 1 b a , we obtain ([23], Theorem 2). Moreover, if we take x = a + b 2 , we get ([22], Theorem 7).
Theorem 9.
Consider a differentiable function φ : J R with φ L ( J ) where 0 a < b , and let ω : J R be continuous function. If φ q is quasi-convex, q > 1 and 1 p + 1 q = 1 , then
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 α p + 1 1 p Γ α + 1 ω x , b , max φ x q , φ b q 1 q + x a α + 1 α p + 1 1 p Γ α + 1 ω a , x , max φ x q , φ a q 1 q .
Proof. 
Applying properties of modulus, Lemma 1, Hölder’s inequality, and quasi-convexity of φ q , we obtain
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 Γ α 0 1 p 1 τ p d τ 1 p 0 1 φ τ b + 1 τ x q d τ 1 q + x a α + 1 Γ α 0 1 p 2 τ p d τ 1 p 0 1 φ τ a + 1 τ x q d τ 1 q b x α + 1 Γ α 0 1 τ 1 1 σ α 1 ω σ b + 1 σ x d σ p d τ 1 p max φ x q , φ b q 1 q + x a α + 1 Γ α 0 1 τ 1 1 σ α 1 ω σ a + 1 σ x d σ p d τ 1 p max φ x q , φ a q 1 q b x α + 1 Γ α ω x , b , 0 1 τ 1 1 σ α 1 d σ p d τ 1 p max φ x q , φ b q 1 q + x a α + 1 Γ α ω a , x , 0 1 τ 1 1 σ α 1 d σ p d τ 1 p max φ x q , φ a q 1 q = b x α + 1 α p + 1 1 p Γ α + 1 ω x , b , max φ x q , φ b q 1 q + x a α + 1 α p + 1 1 p Γ α + 1 ω a , x , max φ x q , φ a q 1 q .
The proof is completed. □
Corollary 4.
Let x = a + b 2 in Theorem 9, then
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 b a α + 1 2 α + 1 α p + 1 1 p Γ α + 1 ω a , b , max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Corollary 5.
Choosing ω u = 1 b a in Theorem 9, we get
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x b x α + 1 α p + 1 1 p Γ α + 1 max φ x q , φ b q 1 q + x a α + 1 α p + 1 1 p Γ α + 1 max φ x q , φ a q 1 q .
Moreover, if we take x = a + b 2 , we obtain
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 b a 4 α p + 1 1 p max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Corollary 6.
For α = 1 in Theorem 9, we have
a b ω u φ ( u ) d u a b ω u d u φ x b x 2 p + 1 1 p ω x , b , max φ x q , φ b q 1 q + x a 2 p + 1 1 p ω a , x , max φ x q , φ a q 1 q .
Moreover, considering x = a + b 2 , we get
a b ω u φ ( u ) d u a b ω u d u φ a + b 2 b a 2 4 p + 1 1 p ω a , b , max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Corollary 7.
In Corollary 6, if we choose ω u = 1 b a , we obtain
1 b a a b φ ( u ) d u φ x b x 2 b a p + 1 1 p max φ x q , φ b q 1 q + x a 2 b a p + 1 1 p max φ x q , φ a q 1 q .
For x = a + b 2 , we get ([22], Theorem 8).
Theorem 10.
Consider a differentiable function φ : J R with φ L ( J ) where 0 a < b , and let ω : J R be continuous function. If φ q is quasi-convex, where q 1 , then
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 Γ α + 2 ω x , b , max φ x q , φ b q 1 q + x a α + 1 Γ α + 2 ω a , x , max φ x q , φ a q 1 q .
Proof. 
By properties of modulus, applying Lemma 1, power mean inequality and quasi-convexity of φ q , we obtain
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x b x α + 1 Γ α 0 1 p 1 τ d τ 1 1 q 0 1 p 1 τ φ τ b + 1 τ x q d τ 1 q + x a α + 1 Γ α 0 1 p 2 τ d τ 1 1 q 0 1 p 2 τ φ τ a + 1 τ x q d τ 1 q b x α + 1 Γ α 0 1 p 1 τ d τ 1 1 q max φ x q , φ b q 0 1 p 1 τ d τ 1 q + x a α + 1 Γ α 0 1 p 2 τ d τ 1 1 q max φ x q , φ a q 0 1 p 2 τ d τ 1 q = b x α + 1 Γ α 0 1 p 1 τ d τ max φ x q , φ b q 1 q + x a α + 1 Γ α 0 1 p 2 τ d τ max φ x q , φ a q 1 q b x α + 1 Γ α ω x , b , 0 1 τ 1 1 σ α 1 d σ d τ max φ x q , φ b q 1 q + x a α + 1 Γ α ω a , x , 0 1 τ 1 1 σ α 1 d σ d τ max φ x q , φ a q 1 q = b x α + 1 Γ α + 2 ω x , b , max φ x q , φ b q 1 q + x a α + 1 Γ α + 2 ω a , x , max φ x q , φ a q 1 q .
The proof is completed. □
Corollary 8.
For x = a + b 2 in Theorem 10, we get
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 b a α + 1 2 α + 1 Γ α + 2 ω a , b , max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Corollary 9.
Choosing ω u = 1 b a in Theorem 10, we have
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x b x α + 1 Γ α + 2 max φ x q , φ b q 1 q + x a α + 1 Γ α + 2 max φ x q , φ a q 1 q .
Moreover, if we take x = a + b 2 , we obtain
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 b a 4 α + 1 × max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Corollary 10.
Considering α = 1 in Theorem 10, we get
a b ω u φ ( u ) d u a b ω u d u φ x b x 2 2 ω x , b , max φ x q , φ b q 1 q + x a 2 2 ω a , x , max φ x q , φ a q 1 q .
Moreover, for x = a + b 2 , we have
a b ω u φ ( u ) d u a b ω u d u φ a + b 2 b a 2 8 ω a , b , max φ a + b 2 q , φ b q 1 q + max φ a + b 2 q , φ a q 1 q .
Remark 2.
Choosing ω u = 1 b a in Corollary 10, we obtain ([23], Theorem 4). Moreover, for x = a + b 2 , we get ([22], Theorem 9).

3. Further Results

In this section, we will prove the following results.
Theorem 11.
Consider a differentiable function φ : J R with φ L ( J ) , 0 a < b , and let ω : J R be continuous function. If there exist constants m < M such that < m φ x M < + for all x J , then
Λ α a , x , b , ω , φ M m b x α + 1 2 Γ α + 2 ω x , b , + M m x a α + 1 2 Γ α + 2 ω a , x , ,
where
Λ α a , x , b , ω , φ : = J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x M + m b x α + 1 x a α + 1 2 Γ α 0 1 p 1 ( τ ) + p 2 ( τ ) d τ ,
and p 1 , p 2 are defined as in (2) and (3), respectively.
Proof. 
Applying Lemma 1, we get
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x M + m 2 + M + m 2 d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x M + m 2 + M + m 2 d τ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x M + m 2 d τ + M + m b x α + 1 2 Γ α 0 1 p 1 τ d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x M + m 2 d τ M + m x a α + 1 2 Γ α 0 1 p 2 τ d τ .
From (9), we have
Λ α a , x , b , ω , φ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x M + m 2 d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x M + m 2 d τ ,
where Λ α a , x , b , ω , φ is defined as in (8). Applying absolute value on both sides of (10) and using the fact that m φ x M for all x J , we obtain
Λ α a , x , b , ω , φ b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x M + m 2 d τ + x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x M + m 2 d τ M m b x α + 1 2 Γ α 0 1 τ 1 1 σ α 1 ω σ b + 1 σ x d σ d τ + M m x a α + 1 2 Γ α 0 1 τ 1 1 σ α 1 ω σ a + 1 σ x d σ d τ M m b x α + 1 2 Γ α + 2 ω x , b , + M m x a α + 1 2 Γ α + 2 ω a , x , .
The proof is completed. □
Corollary 11.
For x = a + b 2 in Theorem 11, we have
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 M m b a α + 1 2 α + 1 Γ α + 2 ω a , b , .
Corollary 12.
Putting ω u = 1 b a in Theorem 11, we get
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x M + m b x α + 1 x a α + 1 2 Γ α + 2 M m b x α + 1 + x a α + 1 2 Γ α + 2 .
Moreover, if we take x = a + b 2 , we obtain
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 M m b a 4 α + 1 .
Corollary 13.
Choosing α = 1 in Theorem 11, we have
a b ω u φ ( u ) d u a b ω ( u ) d u φ x M + m b x 2 x a 2 2 τ 1 ω ( σ a + ( 1 σ ) x ) + ω ( σ b + ( 1 σ ) x ) d σ d τ M m 4 b x 2 ω x , b , + x a 2 ω a , x , .
Moreover, for x = a + b 2 , we get
a b ω u φ ( u ) d u a b ω ( u ) d u φ a + b 2 M m b a 2 8 ω a , b , .
Corollary 14.
Let ω u = 1 b a in Corollary 13, then
1 b a a b φ ( u ) d u φ x M + m b x 2 x a 2 4 b a b x 2 + x a 2 M m 4 b a .
For x = a + b 2 , then
1 b a a b φ ( u ) d u φ a + b 2 b a M m 8 .
Before giving our next result, we recall that a function φ : J R is r-H-Hölder (Hölder condition, see [44]), if
φ ( x ) φ ( y ) H x y r
holds for all x , y J , for some H > 0 and r 0 , 1 .
Theorem 12.
Consider a differentiable function φ : J R with φ L ( J ) , 0 a < b , and let ω : J R be continuous function. If φ satisfies Hölder condition for some H > 0 and r 0 , 1 , then
Ξ α a , x , b , ω , φ H b x α + r + 1 α + r + 1 Γ α + 1 ω x , b , + x a α + r + 1 α + r + 1 Γ α + 1 ω a , x , ,
where
Ξ α a , x , b , ω , φ : = J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x φ b b x α + 1 φ a x a α + 1 2 Γ α 0 1 p 1 ( τ ) + p 2 ( τ ) d τ ,
and p 1 , p 2 are defined as in (2) and (3), respectively.
Proof. 
Applying Lemma 1, we have
J x α ω φ ( a ) + J x + α ω φ ( b ) J x α ω ( a ) + J x + α ω ( b ) φ x = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x d τ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x φ b + φ b d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x φ a + φ a d τ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x φ b d τ + φ b b x α + 1 2 Γ α 0 1 p 1 τ d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x φ a d τ φ a x a α + 1 2 Γ α 0 1 p 2 τ d τ .
From (12), we get
Ξ α a , x , b , ω , φ = b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x φ b d τ x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x φ a d τ ,
where Ξ α a , x , b , ω , φ is defined as in (11). Applying absolute value on both sides of (13) and r-H-Hölder property of φ , we obtain
Ξ α a , x , b , ω , φ b x α + 1 Γ α 0 1 p 1 τ φ τ b + 1 τ x φ b d τ + x a α + 1 Γ α 0 1 p 2 τ φ τ a + 1 τ x φ a d τ H b x α + r + 1 Γ α + 1 ω x , b , + x a α + r + 1 Γ α + 1 ω a , x , 0 1 1 τ α + r d τ = H b x α + r + 1 α + r + 1 Γ α + 1 ω x , b , + x a α + r + 1 α + r + 1 Γ α + 1 ω a , x , .
The proof is completed. □
Corollary 15.
Letting x = a + b 2 in Theorem 12, we have
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 H b a α + r + 1 2 α + r α + r + 1 Γ α + 1 ω a , b , + b a α + 1 φ b φ a 2 α + 2 Γ α 0 1 p 1 ( τ ) + p 2 ( τ ) d τ .
Corollary 16.
Choosing ω u = 1 b a in Theorem 12, we get
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x H b x α + r + 1 + x a α + r + 1 α + r + 1 Γ α + 1 + φ b b x α + 1 φ a x a α + 1 2 Γ α + 2 .
Moreover, if we take x = a + b 2 , we obtain
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 H b a r + 1 2 1 + r α + r + 1 + b a φ b φ a 8 α + 1 .
Corollary 17.
For α = 1 in Theorem 12, we have
a b ω u φ ( u ) d u a b ω u d u φ x H b x r + 2 ω x , b , + x a r + 2 ω a , x , r + 2 + φ b b x 2 φ a x a 2 2 × 0 1 τ 1 ω σ a + 1 σ x + ω σ b + 1 σ x d σ d τ .
Moreover, for x = a + b 2 , we get
a b ω u φ ( u ) d u a b ω u d u φ a + b 2 H b a r + 2 2 r + 1 r + 2 ω a , b , + φ b b a 2 φ a b a 2 8 × 0 1 τ 1 ω σ a + 1 σ a + b 2 + ω σ b + 1 σ a + b 2 d σ d τ .
Corollary 18.
In Corollary 17, if we choose ω u = 1 b a , we obtain
1 b a a b φ ( u ) d u φ x H b x r + 2 + x a r + 2 r + 2 b a + φ b b x 2 φ a x a 2 4 b a .
Moreover, if we take x = a + b 2 , we have
1 b a a b φ ( u ) d u φ a + b 2 H b a r + 2 2 r + 1 r + 2 + φ b φ a b a 16 .
Corollary 19.
Let φ be a L–Lipschitzian function ( H = L and r = 1 ) in Theorem 12, then
Ξ α a , x , b , ω , φ L b x α + 2 α + 2 Γ α + 1 ω x , b , + x a α + 2 α + 2 Γ α + 1 ω a , x , ,
where Ξ α is defined by (11).
Corollary 20.
For x = a + b 2 in Corollary 19, we get
J a + b 2 α ω φ ( a ) + J a + b 2 + α ω φ ( b ) J a + b 2 α ω ( a ) + J a + b 2 + α ω ( b ) φ a + b 2 L b a α + 2 2 α + 1 α + 2 Γ α + 1 ω a , b , + b a α + 1 φ b φ a 2 α + 2 Γ α 0 1 p 1 ( τ ) + p 2 ( τ ) d τ .
Corollary 21.
In Corollary 19, if we choose ω u = 1 b a , we obtain
J x α φ ( a ) + J x + α φ ( b ) b x α + x a α Γ α + 1 φ x L b x α + 2 + x a α + 2 α + 2 Γ α + 1 + φ b b x α + 1 φ a x a α + 1 2 Γ α + 2 .
Moreover, if we take x = a + b 2 , we have
2 α 1 Γ α + 1 b a α J a + b 2 α φ ( a ) + J a + b 2 + α φ ( b ) φ a + b 2 L b a 2 4 α + 2 + b a φ b φ a 8 α + 1 .
Corollary 22.
Choosing α = 1 in Corollary 19, we get
a b ω u φ ( u ) d u a b ω u d u φ x L b x 3 ω x , b , + x a 3 ω a , x , 3 + φ b b x 2 φ a x a 2 2 × 0 1 τ 1 ω σ a + 1 σ x + ω σ b + 1 σ x d σ d τ .
Moreover, for x = a + b 2 , we obtain
a b ω u φ ( u ) d u a b ω u d u φ a + b 2 L b a 3 12 ω a , b , + φ b b a 2 φ a b a 2 8 × 0 1 τ 1 ω σ a + 1 σ a + b 2 + ω σ b + 1 σ a + b 2 d σ d τ .
Corollary 23.
For ω u = 1 b a in Corollary 22, we have
1 b a a b φ ( u ) d u φ x L b x 3 + x a 3 3 b a + φ b b x 2 φ a x a 2 4 b a .
Moreover, for x = a + b 2 , we get
1 b a a b φ ( u ) d u φ a + b 2 L b a 3 12 + φ b φ a b a 16 .

4. Applications

We shall consider the following special means for different positive real numbers a and b , where a < b :
  • Arithmetic mean: A a , b = a + b 2 .
  • p–Logarithmic mean: L p a , b = b p + 1 a p + 1 p + 1 b a 1 p , p Z \ { 0 , 1 } .
Let recall from [23] the following quasi-convex functions, φ u = u n , n N , n 2 and φ u = 1 u for all u > 0 , respectively.
Using Section 2, we are in position to prove the following results regarding above special means.
Proposition 1.
Let a , b R , 0 < a < b , n N and n 2 , then
L n + 1 n + 1 a , b A n + 1 a , b n b b a 4 A A n 1 a , b , b n 1 .
Proof. 
Taking φ u = u n , u > 0 for x = a + b 2 and ω ( u ) = u in Corollary 3, we get the desired result. □
Proposition 2.
Let a , b R , 0 < a < b , n N and n 2 , then
L n 1 n 1 a , b L n n a , b A a , b b n b a 4 A 1 a 2 , 1 A 2 a , b .
Proof. 
Choosing φ u = 1 u , u > 0 for x = a + b 2 and ω ( u ) = u n in Corollary 3, we obtain the desired result. □
Proposition 3.
Let a , b R , 0 < a < b , p > 1 , n N and n 2 , then
L n + 1 n + 1 a , b A n + 1 a , b n b b a 2 ( p + 1 ) 1 p A A n 1 a , b , b n 1 .
Proof. 
Taking φ u = u n , u > 0 for x = a + b 2 and ω ( u ) = u in Corollary 6, we get the desired result. □
Proposition 4.
Let a , b R , 0 < a < b , p > 1 , n N and n 2 , then
L n 1 n 1 a , b L n n a , b A a , b b n b a 2 ( p + 1 ) 1 p A 1 a 2 , 1 A 2 a , b .
Proof. 
Choosing φ u = 1 u , u > 0 for x = a + b 2 and ω ( u ) = u n in Corollary 6, we obtain the desired result. □

5. Conclusions

The main results and future research of the article can be summarized as follows:
  • A new identity regarding fractional weighted Ostrowski-type is established.
  • New fractional weighted Ostrowski-type inequalities for quasi-convex functions using the above identity are deduced.
  • Several further results for function with a bounded first derivative are given.
  • Some applications to special means are obtained.
  • The efficiency of our results is shown.
  • As future research, from our results, interested reader can find several new interesting inequalities from many areas of pure and applied sciences. Moreover, they can derive (using our technique) applications to special means for different quasi-convex functions.

Author Contributions

Conceptualization, A.K., B.M., P.O.M., T.A.; methodology, B.M., P.O.M., A.A.L., Y.S.H.; software, P.O.M., Y.S.H., A.K.; validation, P.O.M., Y.S.H., B.A.; formal analysis, P.O.M., Y.S.H., T.A.; investigation, P.O.M.; resources, P.O.M., A.K., A.A.L.; data curation, P.O.M., Y.S.H.; writing—original draft preparation, B.M., Y.S.H.; writing—review and editing, Y.S.H., P.O.M., B.A.; visualization, Y.S.H.; supervision, P.O.M., Y.S.H., T.A., A.K. All authors have read and agreed to the final version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

This work was supported by the Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia, and the authors Bahaaeldin Abdalla and Thabet Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35, pp. 87–130. [Google Scholar]
  2. Cesarano, C.; Pierpaolo, N.; Paolo, E.R. Pseudo-Lucas functions of fractional degree and applications. Axioms 2021, 10, 51. [Google Scholar] [CrossRef]
  3. Sabatier, J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
  4. Al-luhaibi, M.S. An analytical treatment to fractional Fornberg-Whitham equation. Math. Sci. 2017, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
  5. Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
  6. Ion, D.A. Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. An. Univ. Craiova Ser. Mat. Inform. 2007, 34, 83–88. [Google Scholar]
  7. Ostrowski, A. Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. (German) Comment. Math. Helv. 1937, 10, 226–227. [Google Scholar] [CrossRef]
  8. Anastassiou, G.A. Ostrowski-type inequalities. Proc. Amer. Math. Soc. 1995, 123, 3775–3781. [Google Scholar] [CrossRef]
  9. Awan, M.U.; Akhtar, N.; Kashuri, A.; Noor, M.A.; Chu, Y.M. 2D approximately reciprocal ρ–convex functions and associated integral inequalities. AIMS Math. 2020, 5, 4662–4680. [Google Scholar] [CrossRef]
  10. Dragomir, S.S.; Wang, S. An inequality of Ostrowski–Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules. Comput. Math. Appl. 1997, 33, 15–20. [Google Scholar] [CrossRef] [Green Version]
  11. Kashuri, A.; Liko, R. Generalizations of Hermite–Hadamard and Ostrowski-type inequalities for MTm–preinvex functions. Proyecciones 2017, 36, 45–80. [Google Scholar] [CrossRef] [Green Version]
  12. Kashuri, A.; Liko, R. Ostrowski-type fractional integral operators for generalized (r, s, m, φ)–preinvex functions. Appl. Appl. Math. 2017, 12, 1017–1035. [Google Scholar] [CrossRef] [Green Version]
  13. Kashuri, A.; Du, T.S.; Liko, R. On some new integral inequalities concerning twice differentiable generalized relative semi–(m, h)–preinvex mappings. Stud. Univ. Babeş-Bolyai Math. 2019, 64, 43–61. [Google Scholar] [CrossRef] [Green Version]
  14. Kunt, M.; Kashuri, A.; Du, T.S.; Baidar, A.W. Quantum Montgomery identity and quantum estimates of Ostrowski-type inequalities. AIMS Math. 2020, 5, 5439–5457. [Google Scholar] [CrossRef]
  15. Meftah, B. Ostrowski inequality for functions whose first derivatives are s–preinvex in the second sense. Khayyam J. Math. 2017, 3, 61–80. [Google Scholar]
  16. Meftah, B. Some new Ostrowski’s inequalities for n–times differentiable mappings which are quasi-convex. Facta Univ. Ser. Math. Inform. 2017, 32, 319–327. [Google Scholar]
  17. Meftah, B. Some new Ostrowski’s inequalities for functions whose nth derivatives are logarithmically convex. Ann. Math. Sil. 2017, 32, 275–284. [Google Scholar] [CrossRef] [Green Version]
  18. Meftah, B. Some Ostrowski’s inequalities for functions whose nth derivatives are s–convex. An. Univ. Oradea Fasc. Mat. 2018, 25, 185–212. [Google Scholar]
  19. Meftah, B.; Kashuri, A. Some new type integral inequalities for approximately harmonic h–convex functions. Mat. Bilten. 2020, 44, 13–36. [Google Scholar]
  20. Sarikaya, M.Z. On the Ostrowski-type integral inequality. Acta Math. Univ. Comenian. (N.S.) 2010, 79, 129–134. [Google Scholar]
  21. Cortez, M.J.V.; García, C.; Kashuri, A.; Hernández, J.E.H. New Ostrowski-type inequalities for coordinated (s,m)–convex functions in the second sense. Appl. Math. Inf. Sci. 2019, 13, 821–829. [Google Scholar]
  22. Alomari, M.; Darus, M.; Dragomir, S.S. Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are quasi-convex. Tamkang J. Math. 2010, 41, 353–359. [Google Scholar] [CrossRef] [Green Version]
  23. Alomari, M.; Darus, M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA Res. Rep. Coll. 2010, 13, 9. [Google Scholar]
  24. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  25. Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  26. Almeida, R.; Guzowska, M.; Odzijewicz, T. A remark on local fractional calculus and ordinary derivatives. Open Math. 2016, 14, 1122–1124. [Google Scholar] [CrossRef]
  27. Dragomir, S.S. Ostrowski-type inequalities for generalized Riemann–Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 2017, 20, Art. 58. [Google Scholar]
  28. Khan, M.B.; Mohammed, P.O.; Noor, B.; Hamed, Y.S. New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  29. Kashuri, A.; Rassias, T.M. Some new Ostrowski type integral inequalities via general fractional integrals (Chapter 8). In Computational Mathematics and Variational Analysis; Daras, N., Rassias, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 159, pp. 135–151. [Google Scholar]
  30. Mohammed, P.O.; Aydi, H.; Kashuri, A.; Hamed, Y.S.; Abualnaja, K.M. Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels. Symmetry 2021, 13, 550. [Google Scholar] [CrossRef]
  31. Meftah, B. Fractional Ostrowski-type inequalities for functions whose first derivatives are ϕ–preinvex. J. Adv. Math. Stud. 2017, 10, 335–347. [Google Scholar]
  32. Meftah, B. Fractional Ostrowski-type inequalities for functions whose first derivatives are s–preinvex in the second sense. Int. J. Anal. App. 2017, 15, 146–154. [Google Scholar]
  33. Alqudah, M.A.; Kashuri, A.; Mohammed, P.O.; Raees, M.; Abdeljawad, T.; Anwar, M.; Hamed, Y.S. On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Math. 2021, 6, 4638–4663. [Google Scholar] [CrossRef]
  34. Mohammed, P.O.; Abdeljawad, T.; Alqudah, M.A.; Jarad, F. New discrete inequalities of Hermite-Hadamard type for convex functions. Adv. Differ. Equ. 2021, 2021, 122. [Google Scholar] [CrossRef]
  35. Meftah, B.; Azaizia, A. Fractional Ostrowski-type inequalities for functions whose first derivatives are MT–preinvex. Rev. Matemáticas Univ. Atlántico Páginas 2019, 6, 33–43. [Google Scholar]
  36. Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
  37. Kashuri, A.; Meftah, B.; Mohammed, P.O. Some weighted Simpson type inequalities for differentiable s-convex functions and their applications. J. Frac. Calc. Nonlinear Sys. 2021, 1, 75–94. [Google Scholar] [CrossRef]
  38. Mohammed, P.O.; Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, 2020, 148. [Google Scholar] [CrossRef]
  39. Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
  40. Set, E. New inequalities of Ostrowski-type for mappings whose derivatives are s–convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
  41. Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski-type inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
  42. Baleanu, D.; Kashuri, A.; Mohammed, P.O.; Meftah, B. General Raina fractional integral inequalities on coordinates of convex functions. Adv. Differ. Equ. 2021, 82, 23. [Google Scholar]
  43. Alb Lupaş, A. Inequalities for Analytic Functions Defined by a Fractional Integral Operator (Chapter 36). In Frontiers in Functional Equations and Analytic Inequalities; Anastassiou, G., Rassias, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 731–745. [Google Scholar]
  44. Dragomir, S.S.; Cerone, P.; Roumeliotis, J.; Wang, S. A weighted version of Ostrowski inequality for mappings of Hölder type and applications in numerical analysis. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 1999, 42, 301–314. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry 2021, 13, 968. https://doi.org/10.3390/sym13060968

AMA Style

Kashuri A, Meftah B, Mohammed PO, Lupaş AA, Abdalla B, Hamed YS, Abdeljawad T. Fractional Weighted Ostrowski-Type Inequalities and Their Applications. Symmetry. 2021; 13(6):968. https://doi.org/10.3390/sym13060968

Chicago/Turabian Style

Kashuri, Artion, Badreddine Meftah, Pshtiwan Othman Mohammed, Alina Alb Lupaş, Bahaaeldin Abdalla, Y. S. Hamed, and Thabet Abdeljawad. 2021. "Fractional Weighted Ostrowski-Type Inequalities and Their Applications" Symmetry 13, no. 6: 968. https://doi.org/10.3390/sym13060968

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop