Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas
Abstract
:1. Introduction
2. Two-Scale Fractal Theory
3. The Fractal Variational Principle
4. Conclusions and Future Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.-G.; Yang, X.-J.; Feng, Y.-Y.; Cui, P.; Geng, L.L. On integrability of the higher-dimensional time fractional KdV-type equation. J. Geom. Phys. 2021, 160, 104000. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, K.L. Variational principles for fractal Whitham-Broer-Kaup Equations in Shallow Water. Fractals 2021, 29, 2150028. [Google Scholar] [CrossRef]
- Wang, K.J.; Sun, H.C.; Wang, K.Z. A Micro-channel Cooling Model for a Three-dimensional Integrated Circuit Considering Through-silicon Vias. Micro Nanosyst. 2021, 13, 49–54. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Geng, L.; Fan, Y. Group analysis of the time fractional (3 + 1)-dimensional KdV-type equation. Fractals 2021. [Google Scholar] [CrossRef]
- Ribaud, F.; Vento, S. A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations. C. R. Math. 2012, 350, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Aslan, I. Generalized solitary and periodic wave solutions to a (2 + 1)-dimensional Zakharov–Kuznetsov equation. Appl. Math. Comput. 2010, 217, 1421–1429. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E.; Kuznetsov, E.A. On three-dimensional solitons. Soviet Phys. 1974, 39, 285–288. [Google Scholar]
- Ghanbari, B.; Yusuf, A.; Baleanu, D. The new exact solitary wave solutions and stability analysis for the (2 + 1)-dimensional Zakharov–Kuznetsov equation. Adv. Differ. Equ. 2019, 49. [Google Scholar] [CrossRef] [Green Version]
- Khalique, C.M.; Adem, K.R. Exact solutions of the (2 + 1)-dimensional Zakharov–Kuznetsov modified equal width equation using Lie group analysis. Math. Comput. Model. 2011, 54, 184–189. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Feng, Y.Y.; Cui, P. On group analysis of the time fractional extended (2 + 1)-dimensional Zakharov–Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 2020, 178, 407–421. [Google Scholar] [CrossRef]
- Wang, K.L.; Wang, H.; Muhammad, H. A new perspective for two different types of fractal Zakharov-Kuznetsov models. Fractals 2021. [Google Scholar] [CrossRef]
- Kuo, C.K. The new exact solitary and multi-soliton solutions for the (2 + 1)-dimensional Zakharov–Kuznetsov equation. Comput. Math. Appl. 2018, 75, 2851–2857. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for the Zakharov–Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1039–1047. [Google Scholar] [CrossRef]
- Faminskii, A.V. Regular solutions to initial-boundary value problems in a half-strip for two-dimensional Zakharov–Kuznetsov equation. Nonlinear Anal. Real World Appl. 2020, 51, 102959. [Google Scholar] [CrossRef]
- Faminskii, A.V. Initial-boundary value problems in a rectangle for two-dimensional Zakharov–Kuznetsov equation. J. Math. Anal. Appl. 2018, 463, 760–793. [Google Scholar] [CrossRef] [Green Version]
- Faminskii, A. Nonlocal well-posedness of the mixed problem for the Zakharov-Kuznetsov equation. J. Math. Sci. 2007, 147. [Google Scholar] [CrossRef]
- Faminskii, A.V. On Inner Regularity of Solutions of Two-Dimensional Zakharov-Kuznetsov Equation. Contemp. Math. Fundam. Dir. 2019, 65, 513–546. [Google Scholar] [CrossRef] [Green Version]
- He, J.H.; Sun, C. A variational principle for a thin film equation. J. Math. Chem. 2019, 57. [Google Scholar] [CrossRef]
- He, J.H. Generalized equilibrium equations for shell derived from a generalized variational principle. Appl. Math. Lett. 2017, 64, 94–100. [Google Scholar] [CrossRef]
- He, J.H. Hamilton’s principle for dynamical elasticity. Appl. Math. Lett. 2017, 72, 65–69. [Google Scholar] [CrossRef]
- Wang, K.L. Variational principle for nonlinear oscillator arising in a fractal nano/microelectromechanical system. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Wu, Y.; He, J.H. A remark on Samuelson’s variational principle in economics. Appl. Math. Lett. 2018, 84, 143–147. [Google Scholar] [CrossRef]
- Samuelson, P.A. Law of conservation of the capital-output ratio. Proc. Natl. Acad. Sci. Appl. Math. Sci. 1970, 67, 1477–1479. [Google Scholar] [CrossRef] [Green Version]
- He, J.H.; Liu, J.F. Allometric scaling laws in biology and physics. Chaos Solitons Fractals 2009, 41, 1836–1838. [Google Scholar] [CrossRef]
- He, J.H. Asymptotic methods for solitary solutions and compactons. Abstr. Appl. Anal. 2012, 916793. [Google Scholar] [CrossRef] [Green Version]
- Tao, Z.L. Variational approach to the Benjamin Ono equation. Nonlinear Anal. Real World Appl. 2009, 10, 1939–1941. [Google Scholar] [CrossRef]
- He, J.H. A fractal variational theory for one-dimensional compressible flow in a microgravity space. Fractals 2020, 28, 2050024. [Google Scholar] [CrossRef]
- Wang, K.L. A novel approach for fractal Burgers-BBM equation and its variational principle. Fractals 2021, 29, 2150059. [Google Scholar] [CrossRef]
- He, J.H. Variational principle for the generalized KdV-burgers equation with fractal derivatives for shallow water waves. J. Appl. Comput. Mech. 2020, 6, 735–740. [Google Scholar]
- Wang, K.J.; Sun, H.C.; Cui, Q.C. The fractional Sallen-Key filter described by local fractional derivative. IEEE Access 2020, 8, 166377–166383. [Google Scholar] [CrossRef]
- Wang, K.J.; Li, C.L. A a-order R-L high-pass filter modeled by local fractional derivative. Alex. Eng. J. 2020, 59, 3244–3248. [Google Scholar] [CrossRef]
- Wang, K.J. On a High-pass filter described by local fractional derivative. Fractals 2020, 28, 2050031. [Google Scholar] [CrossRef]
- Wang, K.L. He’s frequency formulation for fractal nonlinear oscillator arising in a microgravity space. Numer. Methods Partial. Differ. Equ. 2020. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Q. Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications. Math. Meth. Appl. Sci. 2020, 43, 5776–5787. [Google Scholar] [CrossRef]
- Wang, K.J.; Sun, H.C.; Fei, Z. The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative. Alexandria Eng. J. 2020, 59, 4669–4675. [Google Scholar] [CrossRef]
- Wang, K.J. A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. Plus 2020, 135, 871. [Google Scholar] [CrossRef]
- Attia, R.A.M.; Baleanu, D.; Lu, D.; Mostafa, M.A.K.; El-Sayed, A. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discret. Contin. Dyn. Syst.-S 2021. [Google Scholar] [CrossRef]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- He, J.H.; Ain, Q.T. New promises and future challenges of fractal calculus: From two-scale thermodynamics to fractal variational principle. Therm. Sci. 2020, 24, 659–681. [Google Scholar] [CrossRef]
- Wang, K.L. A new fractal transform frequency formulation for fractal nonlinear oscillators. Fractals 2021, 29, 2150062. [Google Scholar] [CrossRef]
- Liang, Y.H.; Wang, K.J. On a variational principle for the fractal Wu–Zhang system arising in shallow water. GEM-Int. J. Geomath. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- He, J. Semi-Inverse Method of Establishing Generalized Variational Principles for Fluid Mechanics with Emphasis on Turbomachinery Aerodynamics. Int. J. Turbo Jet Engines 1997, 14, 23–28. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D.; Zhu, H.W. A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. Fractals 2021. [Google Scholar] [CrossRef]
- Wang, K.J. On the new exact traveling wave solutions of the time-space fractional strain wave equation in microstructured solids via the variational method. Commun. Theor. Phys. 2021, 73, 45001. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational principle and approximate solution for the fractal generalized Benjamin-Bona-Mahony-Burgers equation in fluid mechanics. Fractals 2021, 3, 2150075. [Google Scholar] [CrossRef]
- He, J. A Family of Variational Principles for Compressible Rotational Blade-to-Blade Flow Using Semi-Inverse Method. Int. J. Turbo Jet Engines 1998, 15, 95–100. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics. Fractals 2021. [Google Scholar] [CrossRef]
- Wang, K.J. Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. Fractals 2021, 29, 2150044. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. He’s variational method for the time-space fractional nonlinear Drinfeld-Sokolov-Wilson system. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Wang, K.J. A variational principle for the (3 + 1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics. EPL 2020, 132, 44002. [Google Scholar] [CrossRef]
- Kang-Jia, W.; Hong-Wei, Z.; Xiao-Lian, L.; Guo-Dong, W. Constructions of new abundant traveling wave solutions for system of the ion sound and Langmuir waves by the variational direct method. Results Phys. 2021, 26, 104375. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Solitary and periodic wave solutions of the generalized fourth order boussinesq equation via He’s variational methods. Math. Methods Appl. Sci. 2021, 44, 5617–5625. [Google Scholar] [CrossRef]
- Wang, K.J.; Wang, G.D. Periodic solution of the (2 + 1)-dimensional nonlinear electrical transmission line equation via variational method. Results Phys. 2021, 20, 103666. [Google Scholar] [CrossRef]
- He, J.H. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. Results Phys. 2020, 17, 103031. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.-H.; Wang, K.-J. Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas. Symmetry 2021, 13, 1022. https://doi.org/10.3390/sym13061022
Liang Y-H, Wang K-J. Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas. Symmetry. 2021; 13(6):1022. https://doi.org/10.3390/sym13061022
Chicago/Turabian StyleLiang, Yan-Hong, and Kang-Jia Wang. 2021. "Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas" Symmetry 13, no. 6: 1022. https://doi.org/10.3390/sym13061022
APA StyleLiang, Y.-H., & Wang, K.-J. (2021). Generalized Variational Principle for the Fractal (2 + 1)-Dimensional Zakharov–Kuznetsov Equation in Quantum Magneto-Plasmas. Symmetry, 13(6), 1022. https://doi.org/10.3390/sym13061022