
symmetryS S

Article

Generalized Variational Principle for the Fractal
(2 + 1)-Dimensional Zakharov–Kuznetsov Equation in
Quantum Magneto-Plasmas

Yan-Hong Liang 1 and Kang-Jia Wang 2,*

����������
�������

Citation: Liang, Y.-H.; Wang, K.-J.

Generalized Variational Principle for

the Fractal (2 + 1)-Dimensional

Zakharov–Kuznetsov Equation in

Quantum Magneto-Plasmas.

Symmetry 2021, 13, 1022. https://

doi.org/10.3390/sym13061022

Academic Editor: Dumitru Baleanu

Received: 11 May 2021

Accepted: 4 June 2021

Published: 7 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Qilu Transportation, Shandong University, Jinan 250061, China; liangyanhong@sdu.edu.cn
2 School of Physics and Electronic Information Engineering, Henan Polytechnic University,

Jiaozuo 454003, China
* Correspondence: kangjiaw@hpu.edu.cn or konka05@163.com

Abstract: In this paper, we propose the fractal (2 + 1)-dimensional Zakharov–Kuznetsov equation
based on He’s fractal derivative for the first time. The fractal generalized variational formulation
is established by using the semi-inverse method and two-scale fractal theory. The obtained fractal
variational principle is important since it not only reveals the structure of the traveling wave solutions
but also helps us study the symmetric theory. The finding of this paper will contribute to the study
of symmetry in the fractal space.
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1. Introduction

Nonlinear differential equations are widely used to describe various complex phe-
nomena arising in physics, biology, chemistry, and other fields [1–4]. The study of their
solutions has always been the focus of the researchers. In this work, we mainly study
the well-known (2 + 1)-dimensional Zakharov–Kuznetsov (Z-K) equation, which is first
derived by Zakharov and Kuznetsov and can well describe the propagation of nonlinear
ionic-sonic waves in a magnetized plasma composed of cold ions and hot isothermal
electrons. The (2 + 1)-dimensional Z-K equation is illustrated in detail in [5–7] as:

ut + 2muux + nuxxx + kuxyy = 0, (1)

where m, n, and k are non-zero constants. In recent years, the exact solutions of Equation (1)
have been studied by many researchers, and many effective solutions have been obtained,
such as the generalized exponential rational function method [8], Lie group analysis [9],
group analysis approach [10], Exp-function method [11], Coupled Burgers’ equations
method [12], extended tanh method [13], and so on [14–17]. These results are important
and can help us study the (2 + 1)-dimensional Z-K equation. But the research on its
variational principle is relatively less. The study of the variational principle is also of
great significance because it can help us study the symmetries, reveals the possible energy
conservation of the whole solution domain, and plays a key role in the numerical and
analytical analysis of practical problems involved in chemistry [18], mechanics [19,20], nano
system [21], economics [22,23], life science [24], mathematics [25,26] and so on [27–29].

Recently, fractal calculus is a hot topic and has been used widely to model many com-
plex phenomena involved in fractal filtering [30–32], physics [33,34], circuit [35], biomedical
science [36,37], and so on. Motivated by the recent research on fractal calculus, this paper,
for the first time, proposes the fractal (2 + 1)-dimensional Z-K equation that can describe
the propagation of nonlinear ionic-sonic waves with non-smooth boundary (such as the
fractal boundary in Figure 1) via replacing the smooth space (x, y, t) in Equation (1) by a
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fractal space
(

xβ, yγ, tρ
)
, where β, γ, and ρ are, respectively, fractal dimensions in space

and time. So, in the fractal space, Equation (1) can be modified as:

∂

∂tρ u + 2mu
∂

∂xβ
u + n

∂3

∂x3β
u + k

∂

∂xβ

∂2

∂y2γ
u = 0, (2)

where ∂
dtρ , ∂

dxβ , and ∂
dyγ are the He’s fractal derivatives with respect to t, x, and y that are

defined as [38,39]:

∂

dtρ u(x, y, t0) = Γ(1 + ρ) lim
t− t0 = ∆t

∆t 6= 0

u(x, y, t)− u(x, y, t0)

(t− t0)
ρ (3)

∂u
∂xβ

u(x0, y, t) = Γ(1 + β) lim
x− x0 = ∆x

∆x 6= 0

u(x, y, t)− u(x0, y, t)

(x− x0)
β

(4)

∂u
∂yγ

u(x, y0, t) = Γ(1 + γ) lim
y− y0 = ∆y

∆y 6= 0

u(x, y, t)− u(x0, y, t)
(y− y0)

γ (5)

Figure 1. The non-smooth boundary (fractal boundary).

There are the following chain rules:

∂2

∂x2β
=

∂

∂xβ

∂

∂xβ
(6)

∂3

∂x3β
=

∂

∂xβ

∂

∂xβ

∂

∂xβ
(7)

Noting that Equation (2) becomes the classic (2 + 1)-dimensional Z-K equation when
γ = β = ρ = 1.

2. Two-Scale Fractal Theory

The two-scale fractal theory is a powerful tool to solve fractal equations. Now we
introduce the two-scale transforms in the fractal time and spatial respectively as [40,41]:

T = tρ (8)

X = xβ (9)

Y = yγ (10)

where x, y, t are for the small scale and X, Y, T for large scale, ρ, β, γ are the two-
scale dimensions.
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Applying the above transforms to Equation (2), Equation (2) can be converted into the
following form:

uT + 2muuX + nuXXX + kuXYY = 0 (11)

In the following content, we mainly use the semi-inverse method to develop the
variational principle of Equation (2).

3. The Fractal Variational Principle

In order to use the semi-inverse method [42–50], we first re-write Equation (11) into
the conserved form as:

uT +
(

mu2 + nuXX + kuYY

)
X
= 0 (12)

Now we introduce a new function ω, which satisfies:

∂ω

∂X
= u (13)

∂ω

∂T
= −

(
mu2 + nuXX + kuYY

)
(14)

Then we aim to structure a variational formulation for Equation (12) as:

J(ω, u) =
y

L(u, uT , uX , uY, uTT , uXX , uYY, ω, ωX , ωY)dTdXdY (15)

where L is the trial-Lagrange function.
According to the semi-inverse method, we suppose the trial-Lagrange function with

the following form:

L = uωT +
(

mu2 + nuXX + kuYY

)
ωX + ε (16)

here ε is an unknown function of u, and/or ω, and/or their derivatives.
Taking a variation on Equation (16) with respect to ω, yields:

− uT −
(

mu2 + nuXX + kuYY

)
X
+

δε

δω
= 0 (17)

where δε/δω is called the variational derivative, which takes the following form in this paper:

δε

δω
=

∂ε

∂ω
+

∂2

∂X2

(
∂ε

∂ωXX

)
+

∂2

∂y2

(
∂ε

∂ωYY

)
(18)

By carefully comparing Equations (17) and (12), it is easy to find that when δε
δω = 0,

Equation (17) becomes Equation (12). So, we set:

δε

δω
= 0 (19)

Making a variation on Equation (16) with respect to u, we have:

ωT + 2muωX + nωXXX + kωXYY +
δε

δu
= 0 (20)

where δε/δu is the variational derivative. In this paper, it can be written as:

δε

δu
=

∂ε

∂u
+

∂2

∂X2

(
∂ε

∂uXX

)
+

∂2

∂Y2

(
∂ε

∂uYY

)
(21)
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In the view of Equations (13) and (14), there are:

δε
δu = −ωT − 2muωX − nωXXX − kωXYY

=
(
mu2 + nuXX + kuYY

)
− 2mu2 − nuXX − kuYY

= −mu2
(22)

So, ε can be identified as:

ε = −1
3

mu3 (23)

Finally, the following Lagrange function can be obtained:

L = uωX +
(

mu2 + nuXX + kuYY

)
ωX −

1
3

mu3 (24)

Then we get the variational formulation for Equation (13) as:

J(ω, u) =
y {

uωT +
(

mu2 + nuXX + kuYY

)
ωX −

1
3

mu3
}

dTdXdY (25)

which is subject to Equation (13).

Proof. The Euler–Lagrange equations of Equation (25) are:

uT +
(

mu2 + nuXX + kuYY

)
X
= 0, (26)

ωT + 2muωX + nωXXX + kωXYY −mu2 = 0 (27)

Under the constraint condition given by Equation (13), it can be proven that Equations
(26) and (27) are equivalent to Equations (12) and (14), respectively. In the view of the
two-scale transforms of Equations (8)–(10), we can get the fractal variational formulation
of Equation (2) as:

J(ω, u) =
y {

u
∂ω

∂tρ +

(
mu2 + n

∂u
∂x2β

+ k
∂u

∂y2γ

)
∂ω

∂xβ
− 1

3
mu3

}
dtρdxβdyγ (28)

The obtained fractal variational principle in Equation (28) can help us study the symmetries
and the structure of the traveling wave solutions for the fractal (2 + 1)-dimensional Z-K
equation in plasma physics.

4. Conclusions and Future Recommendation

Based on He’s fractal derivative, we propose the fractal (2 + 1)-dimensional Z-K
equation with a fractal boundary for the first time. By using the two-scale fractal theory
and semi-inverse method, we successfully establish its fractal generalized variational
formulation. And the obtained variational formulation is proven correct by minimizing
the trial-Lagrange function with the calculus of variations. The whole derivation process is
given in detail.

Furthermore, the variational formulation is the theoretical basis of the variational
method [51–54] to seek the traveling wave solutions since it can reveal the solution struc-
tures. How to use the variational method to obtain the traveling wave solutions of Equation
(2) is the focus of our future research. The obtained results in this work are expected to be
helpful for the study of the symmetry and traveling wave theory in the fractal space.
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