Algebra of Symmetry Operators for Klein-Gordon-Fock Equation
Abstract
:1. Introduction
2. Conditions for the Existence of Symmetry Operators
2.1. Hamilton-Jacobi Equation
2.2. Klein-Gordon-Fock Equation
3. Solvable Groups
3.1. The Group
3.2. Group
3.3. Group
3.4. Group
3.5. Group
3.6. Group
3.7. Group
4. Insolvable Groups
4.1. Group
4.2. Group
5. Conclusions
Funding
Conflicts of Interest
Appendix A.
Appendix A.1. Group G3 (I)
Appendix A.2. Group G3 (II)
Appendix A.3. Group G3 (III)
Appendix A.4. Group G3 (IV)
Appendix A.5. Group G3 (V)
Appendix A.6. Group G3 (VI)
Appendix A.7. Group G3 (VII)
Appendix A.8. Group G3 (VIII)
Appendix A.9. Group G3 (IX)
References
- Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar] [CrossRef]
- Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar]
- Shapovalov, V.N. Symmetry of motion equations of free particle in riemannian space. Sov. Phys. J. 1975, 18, 1650–1654. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in the Hamilton-Jacobi equation. Sov. Phys. J. 1978, 21, 1124–1132. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stackel’s spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Complete separation of variables in the free Hamilton-Jacobi equation. Theor. Math. Phys. 1993, 97, 1275–1289. [Google Scholar] [CrossRef]
- Benenti, S. Separability in Riemannian Manifolds. SIGMA 2016, 12, 013. [Google Scholar] [CrossRef]
- Miller, W. Symmetry And Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; p. 318. [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 1289. [Google Scholar] [CrossRef]
- Obukhov, V.V. Integration of the Hamilton-Jacobi and Maxwell equations for Diagonal metrics. Russ. Phys. J. 2020, 63, 33–35. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Meth. Mod. Phys. 2020, 17, 2050186. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Meth. Mod. Phys. 2021, 18, 2150036. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Separation of variables for the Klein-Gordon equation in special staeckel space-times. Class. Quant. Grav. 1990, 7, 19–25. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Shapovalov A.V. Special Stackel electrovac spacetimes. Pramana J. Phys. 1986, 26, 93–108. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Classes of exact solutions of the Einstein-Maxwell equations. Ann. Phys. 1983, B40, 181–188. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett. 1968, 26, 399–400. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method. J. Math. Phys. 2017, 58, 112504. [Google Scholar] [CrossRef]
- Osetrin, K.E.; Filippov, A.E.; Osetrin, E.R. The spacetime models with dust matter that admit separation of variables in Hamilton-Jacobi equations of a test particle. Mod. Phys. Lett. A 2016, 31, 410. [Google Scholar] [CrossRef] [Green Version]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Maharaj, S.D.; Goswami, R.; Chervon, S.V.; Nikolaev, A.V. Exact solutions for scalar field cosmology in f(R) gravity. Mod. Phys. Lett. A 2017, 32, 1750164. [Google Scholar] [CrossRef] [Green Version]
- Rajaratnam, K.; Mclenaghan, R.G.; Valero, C. Orthogonal separation of the Hamilton Jacobi equation on spaces of constant curvature. SIGMA 2016, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Rajaratnam, K.; Mclenaghan, R.G. Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature. J. Math. Phys. 2014, 55, 083521. [Google Scholar] [CrossRef] [Green Version]
- McLenaghan, R.G.; Rastelli, G.; Valero, C. Complete separability of the Hamilton-Jacobi equation for the charged particle orbits in a Lienard-Wiehert field. J. Math. Phys. 2020, 61, 122903. [Google Scholar] [CrossRef]
- Gray, F.; Houri, T.; Kubiznak, D.; Yasui, Y. Symmetry operators for the conformal wave equation. arXiv 2021, arXiv:2101.06700. [Google Scholar]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Eur. Phys. J. 2012, C72, 2068. [Google Scholar] [CrossRef]
- Makarenko, A.N.; Obukhov, V.V. Exact solutions in modified gravity models. Entropy 2012, 14, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. functional algebras and dimensional reduction. Theoret. Math. Phys. 1996, 106, 3–15. [Google Scholar] [CrossRef]
- Magazev, A.A.; Shirokov, I.V.; Yurevich, Y.A. Integrable magnetic geodesic flows on Lie groups. Theor. Math. Phys. 2008, 156, 1127–1140. [Google Scholar] [CrossRef]
- Magazev, A.A. Constructing a complete integral of the hamilton-jacobi equation on pseudo-riemannian spaces with simply transitive groups of motions. Math. Phys. Anal. Geom. 2021, 24, 11. [Google Scholar] [CrossRef]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef] [Green Version]
- Shapovalov, A.V.; Breev, A.I. Symmetry operators and separation of variables in the (2 + 1)-dimensional Dirac equation with external electromagnetic field. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1850085. [Google Scholar] [CrossRef] [Green Version]
- Shapovalov, A.V.; Breev, A.I. The Dirac equation in an external electromagnetic field: Symmetry algebra and exact integration. J. Phys. Conf. Ser. 2016, 670, 012015. [Google Scholar]
- Breev, A.I.; Shapovalov, A.V. Noncommutative Integrability of the Klein-Gordon and Dirac equation in (2+1)-dimentional spacetime. Russ. Phys. J. 2017, 59, 1956–1961. [Google Scholar] [CrossRef]
- Shapovalov, A.; Breev, A. Non-commutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E. Integrability of Einstein-Weyl equations for spatially homogeneous models of type III by Bianchi. Russ. Phys. J. 2002, 45, 49–55. [Google Scholar] [CrossRef]
- Petrov, A.Z. Einstein Spaces; Elsevier: Oxford, UK, 1969. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Algebra of Symmetry Operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. https://doi.org/10.3390/sym13040727
Obukhov VV. Algebra of Symmetry Operators for Klein-Gordon-Fock Equation. Symmetry. 2021; 13(4):727. https://doi.org/10.3390/sym13040727
Chicago/Turabian StyleObukhov, Valeriy V. 2021. "Algebra of Symmetry Operators for Klein-Gordon-Fock Equation" Symmetry 13, no. 4: 727. https://doi.org/10.3390/sym13040727