A Note on Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind
Abstract
:1. Introduction
2. Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind
3. Type-Two Degenerate Unipoly-Changhee Polynomials of the Second Kind
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, D.S.; Kim, T.; Seo, J. A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 2013, 7, 993–1003. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 2016, 23, 88–92. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Some identities on degenerate Genocchi and Euler numbers. Informatica 2020, 31, 42–51. [Google Scholar]
- Kim, T.; Jang, L.-C.; Kim, D.S.; Kim, H.-Y. Some identities on type 2 degenerate Bernoulli polynomials of the second kind. Symmetry 2020, 12, 510. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487, 124017. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Carlitz, L. A degenerate Staudt-Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Kim, H.Y. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials. J. Ineq. Appl. 2020, 110, 1–13. [Google Scholar]
- Kim, T.; Kim, D.S. Degenerate Changhee numbers and polynomials of the second kind. arXiv 2017, arXiv:1707.09721v1. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.-Y.; Kwon, J. Some results on degenerate Daehee and Bernoulli numbers and polynomials. Adv. Differ. Eq. 2020, 311, 1–13. [Google Scholar] [CrossRef]
- Sharma, S.K.; Khan, W.A.; Araci, S.; Ahmed, S.S. New type of degenerate Daehee polynomials of the second kind. Adv. Differ. Eq. 2020, 428, 1–14. [Google Scholar] [CrossRef]
- Khan, W.A.; Acikgoz, M.; Duran, U. Note on the type 2 degenerate multi-poly-Euler polynomials. Symmetry 2020, 12, 1691. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Some identities of degenerate Bell polynomials. Mathematics 2020, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Degenerate Stirling polynomials of the second kind and some applications. Symmetry 2019, 11, 1046. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Khan, W.A.; Sharma, S.K.; Ghayasuddin, M. A note on parametric kinds of the degenerate poly-Bernoulli and poly-Genocchi polynomials. Symmetry 2020, 12, 614. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.; Lee, H. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Eq. 2020, 168, 1–12. [Google Scholar] [CrossRef]
- Muhiuddin, M.; Khan, W.A.; Duran, U. Two variable type 2 Fubini polynomials. Mathematics 2021, 9, 281. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T. A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Hamahata, Y. Poly-Euler polynomials and Arakwa-Kaneko type zeta function. Funct. Approx. 2014, 51, 7–22. [Google Scholar]
- Kaneko, M. Poly-Bernoulli numbers. J. Théor Nombres Bordx. 1997, 9, 221–228. [Google Scholar] [CrossRef]
- Khan, W.A. A new class of degenerate Frobenius-Euler-Hermite polynomials. Adv. Stud. Contemp. Math. 2018, 28, 567–576. [Google Scholar]
- Kim, D.S.; Kim, T. Higher-order Bernoulli and poly-Bernoulli mixed type polynomials. Georgian Math. J. 2015, 22, 265–272. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Simsek, B.; Simsek, Y. An approach to negative hypergeometric distribution by generating function for special numbers and polynomials. Turk. J. Math. 2019, 43, 2337–2353. [Google Scholar] [CrossRef]
- Kim, H.Y.; Khan, W.A. Some identities of a new type of degenerate poly-Frobenius polynomials and numbers. Proc. Jangjeon Math. Soc. 2021, 24, 33–45. [Google Scholar]
- Lewin, L. Polylogarithms and Associated Functions; North-Holland Publishing Co.: Amsterdam, The Netherlands; New York, NY, USA, 1981. [Google Scholar]
- Lee, D.S.; Kim, H.-Y.; Jang, L.-C. Type 2 degenerate poly-Euler polynomials. Symmetry 2020, 12, 1011. [Google Scholar] [CrossRef]
- Roman, S. The Umbral Calculus, Pure and Applied Mathematics; Academic Press, Inc.: New York, NY, USA, 1984; ISBN 0-12-594380-6. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgy, D.V.; Khan, W.A. A Note on Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind. Symmetry 2021, 13, 579. https://doi.org/10.3390/sym13040579
Dolgy DV, Khan WA. A Note on Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind. Symmetry. 2021; 13(4):579. https://doi.org/10.3390/sym13040579
Chicago/Turabian StyleDolgy, Dmitry V., and Waseem A. Khan. 2021. "A Note on Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind" Symmetry 13, no. 4: 579. https://doi.org/10.3390/sym13040579
APA StyleDolgy, D. V., & Khan, W. A. (2021). A Note on Type-Two Degenerate Poly-Changhee Polynomials of the Second Kind. Symmetry, 13(4), 579. https://doi.org/10.3390/sym13040579