Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions
Abstract
:1. Introduction
2. Preliminaries: Convex Metric Spaces
3. Enriched Contractions in Convex Metric Spaces
4. Enriched -Contractions in Convex Metric Spaces
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeidler, E. Nonlinear Functional Analysis and Its Applications. I. Fixed-Point Theorems; Springer: New York, NY, USA, 1986. [Google Scholar]
- Rus, I.A.; Petruşel, A.; Petruşel, G. Fixed Point Theory; Cluj University Press: Cluj-Napoca, Romania, 2008. [Google Scholar]
- Berinde, V. Iterative Approximation of Fixed Points, 2nd ed.; Lecture Notes in Mathematics, 1912; Springer: Berlin, Germany, 2007. [Google Scholar]
- Takahashi, W. A convexity in metric space and nonexpansive mappings. I. Kōdai Math. Sem. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
- Machado, H.V. A characterization of convex subsets of normed spaces. Kōdai Math. Sem. Rep. 1973, 25, 307–320. [Google Scholar] [CrossRef]
- Talman, L.A. Fixed points for condensing multifunctions in metric spaces with convex structure. Kōdai Math. Sem. Rep. 1977, 29, 62–70. [Google Scholar] [CrossRef]
- Itoh, S. Some fixed-point theorems in metric spaces. Fund. Math. 1979, 102, 109–117. [Google Scholar] [CrossRef]
- Naimpally, S.A.; Singh, K.L.; Whitfield, J.H.M. Fixed and common fixed points for nonexpansive mappings in convex metric spaces. Math. Sem. Notes Kobe Univ. 1983, 11, 239–248. [Google Scholar]
- Naimpally, S.A.; Singh, K.L.; Whitfield, J.H.M. Fixed points in convex metric spaces. Math. Jpn. 1984, 29, 585–597. [Google Scholar]
- Ding, X.P. Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl. 1988, 132, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L. On some discontinuous fixed point mappings in convex metric spaces. Czechoslovak Math. J. 1993, 43, 319–326. [Google Scholar] [CrossRef]
- Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces. Topol. Methods Nonlinear Anal. 1996, 8, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-C. Iteration processes for nonlinear multi-valued mappings in convex metric spaces. Tamsui Oxf. J. Math. Sci. 1998, 14, 19–24. [Google Scholar]
- Popa, V. Fixed point theorems in convex metric spaces for mappings satisfying an implicit relation. Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz. 2000, 45, 1–10. [Google Scholar]
- Beg, I. An iteration scheme for asymptotically nonexpansive mappings on uniformly convex metric spaces. Nonlinear Anal. Forum 2001, 6, 27–34. [Google Scholar]
- Chang, S.S.; Kim, J.K.; Jin, D.S. Iterative sequences with errors for asymptotically quasi-nonexpansive type mappings in convex metric spaces. Arch. Inequal. Appl. 2004, 2, 365–374. [Google Scholar]
- Sharma, S.; Deshpande, B. Discontinuity and weak compatibility in fixed point consideration of Greguš type in convex metric spaces. Fasc. Math. 2005, 36, 91–101. [Google Scholar]
- Tian, Y.-X. Convergence of an Ishikawa type iterative scheme for asymptotically quasi-nonexpansive mappings. Comput. Math. Appl. 2005, 49, 1905–1912. [Google Scholar] [CrossRef] [Green Version]
- Beg, I.; Abbas, M. Fixed point theorems for weakly inward multivalued maps on a convex metric space. Demonstratio Math. 2006, 39, 149–160. [Google Scholar] [CrossRef]
- Beg, I.; Abbas, M. Common fixed points and best approximation in convex metric spaces. Soochow J. Math. 2007, 33, 729–738. [Google Scholar]
- Beg, I.; Abbas, M.; Kim, J.K. Convergence theorems of the iterative schemes in convex metric spaces. Nonlinear Funct. Anal. Appl. 2006, 11, 421–436. [Google Scholar]
- Aoyama, K.; Eshita, K.; Takahashi, W. Iteration processes for nonexpansive mappings in convex metric spaces. In Nonlinear Analysis and Convex Analysis; Yokohama Publ.: Yokohama, Japan, 2007; pp. 31–39. [Google Scholar]
- Shimizu, T. A convergence theorem to common fixed points of families of nonexpansive mappings in convex metric spaces. In Nonlinear Analysis and Convex Analysis; Yokohama Publ.: Yokohama, Japan, 2007; pp. 575–585. [Google Scholar]
- Abbas, M. Common fixed point results with applications in convex metric space. Fasc. Math. 2008, 39, 5–15. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Fixed Point Theory for Lipschitzian-Type Mappings with Application; Topological Fixed Point Theory and Its Applications; Springer: New York, NY, USA, 2009; p. 6. [Google Scholar]
- Xue, Z.; Lv, G.; Rhoades, B.E. On equivalence of some iterations convergence for quasi-contraction maps in convex metric spaces. Fixed Point Theory Appl. 2010, 2010, 252871. [Google Scholar] [CrossRef] [Green Version]
- Phuengrattana, W.; Suantai, S. Strong convergence theorems for a countable family of nonexpansive mappings in convex metric spaces. Abstr. Appl. Anal. 2011, 2011, 929037. [Google Scholar] [CrossRef] [Green Version]
- Phuengrattana, W.; Suantai, S. Existence and convergence theorems for generalized hybrid mappings in uniformly convex metric spaces. Indian J. Pure Appl. Math. 2014, 45, 121–136. [Google Scholar] [CrossRef]
- Khan, S.H.; Abbas, M. Common fixed point results with applications in convex metric spaces. J. Concr. Appl. Math. 2012, 10, 65–76. [Google Scholar]
- Siriyan, K.; Kangtunyakarn, A. Fixed point results in convex metric spaces. J. Fixed Point Theory Appl. 2019, 21, 12. [Google Scholar] [CrossRef]
- Berinde, V. Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators. An. Univ. Vest Timiş. Ser. Mat. Inform. 2018, 56, 13–27. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian J. Math. 2019, 35, 293–304. [Google Scholar]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition. Carpathian J. Math. 2020, 36, 27–34. [Google Scholar]
- Berinde, V.; Choban, M. Remarks on some completeness conditions involved in several common fixed point theorems. Creat. Math. Inform. 2010, 19, 1–10. [Google Scholar]
- Berinde, V.; Choban, M. Generalized distances and their associate metrics. Impact on fixed point theory. Creat. Math. Inform. 2013, 22, 23–32. [Google Scholar]
- Berinde, V.; Khan, A.R.; Păcurar, M. Convergence theorems for admissible perturbations of ϕ-pseudocontractive operators. Miskolc Math. Notes 2014, 15, 27–37. [Google Scholar] [CrossRef]
- Berinde, V.; Măruşter, Ş.T.; Rus, I.A. An abstract point of view on iterative approximation of fixed points of nonself operators. J. Nonlinear Convex Anal. 2014, 15, 851–865. [Google Scholar]
- Berinde, V.; Păcurar, M. Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. Fixed Point Theory Appl. 2012, 115, 11. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Păcurar, M. Fixed point theorems for nonself single-valued almost contractions. Fixed Point Theory 2013, 14, 301–311. [Google Scholar]
- Berinde, V.; Păcurar, M. Stability of k-step fixed point iterative methods for some Prešić type contractive mappings. J. Inequal. Appl. 2014, 149, 12. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Păcurar, M. A constructive approach to coupled fixed point theorems in metric spaces. Carpathian J. Math. 2015, 31, 277–287. [Google Scholar]
- Berinde, V.; Păcurar, M. Coupled and triple fixed point theorems for mixed monotone almost contractive mappings in partially ordered metric spaces. J. Nonlinear Convex Anal. 2017, 18, 651–659. [Google Scholar]
- Berinde, V.; Păcurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 2020, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Păcurar, M. Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. J. Comput. Appl. Math. 2021, 386, 113217. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces. J. Fixed Point Theory Appl. 2020. submitted. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Chatterjea, S.K. Fixed-point theorems. C. R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. II. Am. Math. Mon. 1969, 76, 405–408. [Google Scholar]
- Caccioppoli, R. Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale. Rend. Accad. Lincei. 1930, 11, 794–799. [Google Scholar]
- Choban, M.M. About convex structures on metric spaces. Carpathian J. Math. 2021, 37. in press. [Google Scholar]
- Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.E.; Petryshyn, W.V. The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 1966, 72, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Górnicki, J. Remarks on asymptotic regularity and fixed points. J. Fixed Point Theory Appl. 2019, 21, 20. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Rus, I.A. Asymptotic regularity, fixed points and successive approximations. Filomat 2020, 34, 965–981. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Browder, F.E. On the convergence of successive approximations for nonlinear functional equations. Nederl. Akad. Wetensch. Proc. Ser. A 71 Indag. Math. 1968, 30, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Matkowski, J. Some inequalities and a generalization of Banach’s principle. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1973, 21, 323–324. [Google Scholar]
- Matkowski, J. Integrable solutions of functional equations. Dissertationes Math. (Rozprawy Mat.) 1975, 127, 68. [Google Scholar]
- Geraghty, M.A. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
- Geraghty, M.A. An improved criterion for fixed points of contraction mappings. J. Math. Anal. Appl. 1974, 48, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. On the fixed point theory for mappings defined on a Cartesian product. II: Metric spaces. Stud. Cercet. Mat. 1972, 24, 897–904. (In Romanian) [Google Scholar]
- Maia, M. Un’osservazione sulle contrazioni metriche. Rend. Sem. Mat. Univ. Padova 1968, 40, 139–143. [Google Scholar]
- Rhoades, B.E.; Singh, K.L.; Whitfield, J.H.M. Fixed points for generalized nonexpansive mappings. Comment. Math. Univ. Carolin. 1982, 23, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Shafrir, I. Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 1990, 15, 537–558. [Google Scholar] [CrossRef]
- Reich, S.; Salinas, Z. Weak convergence of infinite products of operators in Hadamard spaces. Rend. Circ. Mat. Palermo (2) 2016, 65, 55–71. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Attracting mappings in Banach and hyperbolic spaces. J. Math. Anal. Appl. 2001, 253, 250–268. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Zaslavski, A.J. Two porosity theorems for nonexpansive mappings in hyperbolic spaces. J. Math. Anal. Appl. 2016, 433, 1220–1229. [Google Scholar] [CrossRef]
- Alghamdi, M.A.; Berinde, V.; Shahzad, N. Fixed points of multivalued nonself almost contractions. J. Appl. Math. 2013, 2013, 621614. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Approximating fixed points of implicit almost contractions. Hacet. J. Math. Stat. 2012, 41, 93–102. [Google Scholar]
- Berinde, V.; Petruşel, A.; Rus, I.A.; Şerban, M.A. The retraction-displacement condition in the theory of fixed point equation with a convergent iterative algorithm. In Mathematical Analysis, Approximation Theory and Their Applications; Springer: Cham, Switzerland, 2016; pp. 75–106. [Google Scholar]
- Fukhar-ud-din, H.; Berinde, V. Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces. Filomat 2016, 30, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Păcurar, M. An approximate fixed point proof of the Browder-Göhde-Kirk fixed point theorem. Creat. Math. Inform. 2008, 17, 43–47. [Google Scholar]
- Păcurar, M. Remark regarding two classes of almost contractions with unique fixed point. Creat. Math. Inform. 2010, 19, 178–183. [Google Scholar]
- Păcurar, M. Fixed points of almost Prešić operators by a k-step iterative method. An. Ştiinţ. Univ. Al. I Cuza Iaşi. Mat. (N.S.) 2011, 57 (Suppl. 1), 199–210. [Google Scholar] [CrossRef]
- Păcurar, M.; Berinde, V.; Borcut, M.; Petric, M. Triple fixed point theorems for mixed monotone Prešić-Kannan and Prešić-Chatterjea mappings in partially ordered metric spaces. Creat. Math. Inform. 2014, 23, 223–234. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berinde, V.; Păcurar, M. Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions. Symmetry 2021, 13, 498. https://doi.org/10.3390/sym13030498
Berinde V, Păcurar M. Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions. Symmetry. 2021; 13(3):498. https://doi.org/10.3390/sym13030498
Chicago/Turabian StyleBerinde, Vasile, and Mădălina Păcurar. 2021. "Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions" Symmetry 13, no. 3: 498. https://doi.org/10.3390/sym13030498
APA StyleBerinde, V., & Păcurar, M. (2021). Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions. Symmetry, 13(3), 498. https://doi.org/10.3390/sym13030498