Next Article in Journal
Prediction of Band Gap Energy of Doped Graphitic Carbon Nitride Using Genetic Algorithm-Based Support Vector Regression and Extreme Learning Machine
Next Article in Special Issue
Second-Order Impulsive Delay Differential Systems: Necessary and Sufficient Conditions for Oscillatory or Asymptotic Behavior
Previous Article in Journal
Power Law Duality in Classical and Quantum Mechanics
Previous Article in Special Issue
New Theorems for Oscillations to Differential Equations with Mixed Delays
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Oscillation Results of Emden–Fowler-Type Differential Equations

by
Omar Bazighifan
1,*,†,
Taher A. Nofal
2,† and
Mehmet Yavuz
3,*,†
1
Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
2
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
3
Department of Mathematics and Computer Sciences, Necmettin Erbakan University, 42090 Konya, Turkey
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2021, 13(3), 410; https://doi.org/10.3390/sym13030410
Submission received: 31 January 2021 / Revised: 25 February 2021 / Accepted: 1 March 2021 / Published: 3 March 2021

Abstract

:
In this article, we obtain oscillation conditions for second-order differential equation with neutral term. Our results extend, improve, and simplify some known results for neutral delay differential equations. Several effective and illustrative implementations are provided.

1. Introduction

The neutral differential equations are of great importance in life, due to their contribution to many applications in science and technology. We find this type of equations in applications of engineering in-flight vibration, medicine represented in the heartbeat, physics, see [1,2]. For this, many researchers have been interested in studying the oscillations of Emden-Fowler neutral differential equations, see [3].
This manuscript focuses on the oscillatory properties of solutions to second-order differential equation with neutral term:
ς y ξ 1 y + α 1 y ξ 1 α 2 y r 1 + f y , ξ 1 β ı y   = 0 ,
where y y 0 and ξ 2 y = ξ 1 y + α 1 y ξ 1 α 2 y . Our novel outcomes are obtained by considering the following suppositions:
α 2 , β ı C y 0 , , R , β ı y > 0 , α 2 y y , lim y α 2 y = , lim y β ı y = , f y , ξ 1 C y 0 , × R , R , ζ C y 0 , , R , α 1 y 0 , 1 , ξ 1 f y , ξ 1 > 0 for all ξ 1 0 , f y , ξ 1 ı = 1 j ζ ı y ξ 1 r 2 , j 1 , ı = 1 , 2 , . . , j , ς and α 1 are positive functions ; r 1 , r 2 are quotient of odd positive integers .
The following relations are satisfied:
ϖ y 0   : = y 0 ς 1 / r 1 v d v < ,
and
α 1 y   < ϖ y / ϖ α 2 y .
In the context of oscillation theory, it has been the object of many researchers who have investigated this notion for Emden–Fowler neutral differential and difference equations; the reader can refer to Reference [4,5,6,7,8,9,10,11,12,13,14,15,16].
The authors in Reference [5,10,14,15] considered equation of the form
ς y ξ 1 y + α 1 y ξ 1 α 2 y r 1 + ζ y ξ 1 r 2 β y   = 0 .
The authors used Riccati technique that differs from the one we used in this article. Moreover, they also studied the equation under the condition ϖ y 0 = which is different from our condition ϖ y 0   < .
Liu et al. [17] proved that the Equation (5) is oscillates or lim y ξ 1 y = 0 if
y 0 η 1 s ζ s 1 α 1 β ı s r 2 2 r 2 η 1 s 2 ς r 2 / r 1 β ı s 8 r 2 M r 1 r 2 r 1 β ı r 2 1 s β ı s η 1 s d s = ,
and
y 0 1 ς y φ y y 0 y φ s ζ s d s 1 / r 1 d y = ,
where η 1 , φ C y 0 , , 0 , and η 1 > 0 and
α 1 y 0 , α 2 y 0 and lim y α 1 y = C .
On the other hand, in Reference [18], the authors obtained oscillation criteria for equation
ς y ξ 2 y r 1 1 ξ 2 y + ζ y ξ 1 β ı y r 2 1 ξ 1 β ı y   = 0 ,
where
α 1 y   0 , ς y   0 , α 2 y   0 and β ı y   α 2 y ,
and used the comparing technique to ensure that the equation is oscillatory if
y 0 η 1 s ζ s 1 α 1 β ı s r 2 η 1 s ε 1 + 1 ς ε 1 s ε 1 + 1 ε 1 + 1 m η 1 s β ı s ε 1 d s = ,
and
y 0 ϖ ε 2 s ζ s 1 α 1 s r 2 K ς 1 ε 2 + 1 r 1 s ϖ s d s = ,
where η 1 C y 0 , , 0 , and ε 1 = min r 1 , r 2 , ε 2 = max r 1 , r 2 ,
ε 1 y = β y if r 2 r 1 y if r 2 < r 1 and m = 1 r 1 = r 2 0 < m 1 r 1 r 2 .
Saker [13] explained that the Equation (5) is oscillatory if
y ε 2 s ζ s 1 α 1 β ı s y β ı y ς 1 / r 1 x d x y y ς 1 / r 1 x d x r 2 d s = ,
and
y 1 ς s y s ϖ r 2 x ζ x 1 α 1 x r 2 d x 1 / r 1 d s = ,
where
ε 2 y = 1 if r 2 = r 1 c 2 y y ς 1 / r 1 s d s r 2 r 1 if r 2 < r 1 c 1 if r 2 > r 1 ,
and c 1 , c 2 are any positive constants.
In Reference [8,9,19,20,21,22], the authors used the comparing technique with first-order to ensure that Equation (5) is oscillatory and also explained that the equation
ξ 2 y + X ˜ y ξ 2 r 2 / r 1 β ı y   = 0 ,
is oscillatory if and only if
y 0 y X ˜ s d s = ,
and
lim y β ı y y X ˜ s d s = ,
where
X y   = ı = 1 j ζ ı y 1 α 1 β ı y ϖ α 2 β ı y ϖ β ı y r 2 ,
and
X ˜ y   = 1 ς y y 1 y X s d s 1 / r 1 .
From the above, we can observe the following:
-
The conditions that [17] obtained guarantee that all solutions of (5) are either oscillatory or tends to zero;
-
To apply the results in Reference [13,17,18], we must ensure that η 1 y and α 2 y are nondecreasing.
The purpose of this paper is to extend, improve, and simplify results in [13,17,18] and establish new oscillation criteria for (1). Our results improved results in Reference [17] so that the condition guarantee that all solution of (1) is oscillatory, and without imposing restrictions on the derivatives of η 1 y and α 2 y . In addition, we simplify the results in Reference [13,18].

2. Oscillation Criteria

Theorem 1.
If
y 0 1 ς x y 0 x ϖ r 2 β ı s X s d s 1 / r 1 d x = ,
where
X y = ı = 1 j ζ ı y 1 α 1 β ı y ϖ α 2 β ı y ϖ β ı y r 2 ,
then Equation (1) is oscillatory.
Proof. 
Let ξ 1 be a nonoscillatory solution of Equation (1); then, ξ 1 y   > 0 , ξ 1 α 2 y   > 0 and ξ 1 β ı y   > 0 for all y y 1 . Since ξ 1 y   > 0 , we see that ξ 2 y   > 0 and
ς y ξ 2 y r 1 = f y , ξ 1 β ı y ı = 1 j ζ ı y ξ 1 r 2 β ı y < 0 .
Then, ς y ξ 2 y r 1 is strictly decreasing on y 0 , and of one sign.
Let ξ 2 y < 0 for y y 1 . Hence,
ξ 2 y y 1 ς 1 / r 1 s ς 1 / r 1 s ξ 2 s d s ς 1 / r 1 y ξ 2 y ϖ y .
Since
ς y ξ 2 y r 1 < 0 ,
we find
ς y ξ 2 y r 1 ς y 1 ξ 2 y 1 r 1 : = K < 0 ,
for all y y 1 ; thus,
ξ 2 y K 1 / r 1 ϖ y for all y y 1 .
From (19), we see
d d y ξ 2 y ϖ y 0 .
We can also note that
ξ 1 y   = ξ 2 y α 1 y ξ 1 α 2 y ,
and
ξ 1 y   ξ 2 y α 1 y ξ 2 α 2 y .
Then,
ξ 1 y   ξ 2 y 1 α 1 y ϖ α 2 y ϖ y .
From (18), we have
ς y ξ 2 y r 1 ı = 1 j ζ ı y ξ 2 r 2 β ı y 1 α 1 β ı y ϖ α 2 β ı y ϖ β ı y r 2 .
Combining (19) with (20) yields
ς y ξ 2 y r 1 K r 2 / r 1 ϖ r 2 β ı y X y .
By integrating (21) from y 1 to y, we find
ς y ξ 2 y r 1 K r 2 / r 1 y 1 y ϖ r 2 β ı s X s d s .
Integrating (22) from y 1 to y, we obtain
ξ 2 y ξ 2 y 1 K r 2 / r 1 2 y 1 y 1 ς x y 1 x ϖ r 2 β ı s X s d s 1 / r 1 d x .
From (17) and (23), we find that
ξ 2 y   as y ,
while this is a contradiction.
Now, let ξ 2 y > 0 . Then, ξ 2 y > ξ 2 α 2 y > ξ 1 α 2 y ; hence,
ξ 1 y   =   1 α 1 y ξ 2 y .
From (18), we find
ς y ξ 2 y r 1 ı = 1 j ζ ı y 1 α 1 β ı y r 2 ξ 2 r 2 β ı y .
Since ϖ y < 0 , we see that
ϖ α 2 β ı y ϖ β ı y for y y 2 y 1 .
Then, and from (24), we get
ς y ξ 2 y r 1 ı = 1 j ζ ı y 1 α 1 β ı y r 2 ξ 2 r 2 β ı y .
Integrating (25) from y 1 to y, we obtain
ς y ξ 2 y r 1 ς y 2 ξ 2 y 2 r 1 y 2 y ı = 1 j ζ ı s 1 α 1 β ı s r 2 ξ 2 r 2 β ı s d s ς y 2 ξ 2 y 2 r 1 ξ 2 r 2 β ı y 2 y 2 y ı = 1 j ζ ı s 1 α 1 β ı s r 2 d s ς y 2 ξ 2 y 2 r 1 ξ 2 r 2 β ı y 2 y 2 y ı = 1 j ζ ı s 1 α 1 β ı s ϖ α 2 β ı y ϖ β ı y r 2 d s ς y 2 ξ 2 y 2 r 1 ξ 2 r 2 β ı y 2 y 2 y X s d s .
Since ϖ y < 0 , we obtain
y 2 y ϖ r 2 β ı s X s d s ϖ r 2 β ı y 2 y 2 y X s d s .
From (17), we see that y 2 y ϖ r 2 β ı s X s d s must be unbounded. Hence, from (27), we obtain
y 2 y X s d s as y .
From (26), we find
ξ 2 y   as y ,
while this is a contradiction to ξ 2 y > 0 . Thus, the theorem is proved. □
Theorem 2.
If
ξ 2 y + X ˜ y ξ 2 r 2 / r 1 β ı y   = 0
is oscillatory and
y 0 X s d s = .
Then, Equation (1) is oscillatory.
Proof. 
Let ξ 1 be a nonoscillatory solution of Equation (1); then, ξ 1 y > 0 and ξ 2 y is of one sign eventually.
Let ξ 2 y < 0 for all y y 1 . Integrating (20) from y 1 to y, we see that
ς y ξ 2 y r 1 ς y 1 ξ 2 y 1 r 1 y 1 y ξ 2 r 2 β ı s X s d s .
Since β ı y > 0 , we find
ς y ξ 2 y r 1 ξ 2 r 2 β ı y y 1 y X s d s ,
so
ξ 2 y ξ 2 r 2 / r 1 β ı y 1 ς y y 1 y X s d s 1 / r 1 .
Hence, we have that ξ 2 y   > 0 for equation
ξ 2 y   +   X ˜ y ξ 2 r 2 / r 1 β ı y   0 .
From Reference Lemma 1 in [20], Equation (29) has a positive solution. This indicates that is no positive solution of (1), while this is a contradiction.
Let ξ 2 y > 0 for all y y 1 . Thus, we find (30) leads to (28), and then the remainder of the proof is the same as the proof of Theorem 1. Thus, the theorem is proved. □
Next, we establish new oscillation conditions for Equation (1) according to the results obtained by Reference [8,20].
Corollary 1.
Let 0 < r 2 < r 1 and
y 0 y 1 ς s y 1 y X z d z 1 / r 1 d s = ;
then, Equation (1) is oscillatory.
Corollary 2.
Let r 2 > r 1 and
y 0 ı = 1 j ζ ı s 1 α 1 β ı s ϖ α 2 β ı s ϖ β ı s r 2 d s = .
If
lim sup y r 2 θ β ı y β ı y r 1 θ y < 1 ,
and
lim inf y 1 θ y e θ y X ˜ y > 0 ,
where θ y C 1 y 0 , , R , θ y > 0 and lim y θ y = . Then, Equation (1) is oscillatory.

3. Applications

Through this section, we will provide some examples and applications that support the validity of the results and conditions that we got in our article.
Example 1.
Consider the equation
y 2 ξ 1 y + μ y ξ 1 y ε 1 + a y ε 2 ξ 1 y ε 2 = 0 , y y 0 ,
where μ , ε 1 , a , and ε 2 are positive real numbers, and y 0 = max μ + ε 1 , ε 2 + ε 1 .
We have that r 1 = r 2 = 1 ,   ς y = y 2 ,   α 1 y = μ / y ,   α 2 y = y ε 1 ,   ζ y = a y ε 2 , and β ı y = y ε 2 . This gives that ϖ y = y 1 and
X y = a y ε 2 1 μ y ε 2 ε 1 .
Since y > μ + ε 1 , we have that μ / y < y ε 1 / y , and hence α 1 y < ϖ y / ϖ α 2 y . Note that,
y 0 1 x 2 y 0 x 1 μ y ε 2 ε 1 d s d x = .
By Theorem 1, Equation (33) is oscillatory.
Example 2.
Let the equation
e y ξ 1 y + e y ξ 1 α 2 y 11 / 3 + 1 y + 1 ξ 1 y 2 7 / 3 + 1 2 + y ξ 1 y 3 7 / 3 = 0 .
Let, r 1 = 11 / 3 , r 2 = 7 / 3 , ς y = e y , α 1 y = e y , β ı y = y j + 1 with index j = 1 , 2 and
ϖ y 0 = y 0 ς 1 / r 1 v d v = 11 3 e 3 y / 11 1 .
Thus, the condition of Theorem 1 hold, and therefore, each solution of (34) is oscillatory.
Example 3.
Let the equation
e y ξ 1 y + e y ξ 1 ε 1 y + e a y ξ 1 r 2 ε 2 y = 0 , y > 0 ,
where ε 1 , ε 2 0 , 1 and r 2 > 1 . Let, r 1 = 1 , ς y = e y , α 1 y = e y , ζ y = e a y , α 2 y = ε 1 y and β ı y = ε 2 y . This gives that ϖ y = e y and
X y = e a y 1 e ε 1 ε 2 y r 2 .
Moreover, we find
y 0 1 ς x y 0 x ϖ r 2 β ı s X s d s 1 / r 1 d x = y 0 e x y 0 x e a y e ε 2 y 1 e ε 1 ε 2 y r 2 d s d x = ,
if a > r 2 ε 2 + 1 . Thus, by Theorem 1, every solution of (35) oscillates if a > r 2 ε 2 + 1 .
Remark 1.
We see that α 1 y   < 0 in Example 3; thus, the results in Reference [13,17,18] cannot be applied in Equation (35).

4. Conclusions

In this work, we have presented many of the oscillatory properties of the second-order neutral differential equation (1). Our results improve, unify, and extend some known results for differential equations with neutral term. In future work, we will discuss oscillation conditions of these equations by using integral averaging technique and Riccati technique.

Author Contributions

Conceptualization, O.B., T.A.N. and M.Y. These authors contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank the reviewers for their useful comments, which led to the improvement of the content of the paper. (Taher A. Nofal) Taif University Researchers Supporting Project number (TURSP-2020/031), Taif University, Taif, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Diekmann, O.; van Gils, S.A.; Lunel, S.M.V. Hans-Otto Walther: Delay Equations, Functional, Complex and Nonlinear Analysis; Springer-Verlag: New York, NY, USA, 1995. [Google Scholar]
  2. Moaaz, O.; El-Nabulsi, R.A.; Muhsin, W.; Bazighifan, O. Improved Oscillation Criteria for 2nd-Order Neutral Differential Equations with Distributed Deviating Arguments. Mathematics 2020, 8, 849. [Google Scholar] [CrossRef]
  3. Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
  4. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000. [Google Scholar]
  5. Arul, R.; Shobha, V.S. Oscillation of second order quasilinear differential equations with several neutral terms. J. Progress. Res. Math. (JPRM) 2016, 7, 975–981. [Google Scholar]
  6. Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
  7. Elabbasy, E.M.; Hassan, T.S.; Moaaz, O. Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments. Opusc. Math. 2012, 32, 719–730. [Google Scholar] [CrossRef]
  8. Erbe, L.H.; Kong, Q.; Zhang, B.G. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
  9. Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987. [Google Scholar]
  10. Luo, J. Oscillation criteria for second-order quasi-linear neutral difference equations. Comput. Math. Appl. 2002, 43, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
  11. Cesarano, C.; Bazighifan, O. Qualitative behavior of solutions of second order differential equations. Symmetry 2019, 11, 777. [Google Scholar] [CrossRef] [Green Version]
  12. Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. [Google Scholar] [CrossRef]
  13. Saker, S. Oscillation Theory of Delay Differential and Difference Equations; VDM Verlag Dr. Muller: Saarbrucken, Germany, 2010. [Google Scholar]
  14. Sun, S.; Li, T.; Han, Z.; Zhang, C. On oscillation of second-order nonlinear neutral functional differential equations. Bull. Malays. Math. Sci. Soc. 2013, 36, 541–554. [Google Scholar]
  15. Wang, X.; Meng, F. Oscillation criteria of second-order quasi-linear neutral delay differential equations. Math. Comput. Model. 2007, 46, 415–421. [Google Scholar] [CrossRef]
  16. Althobati, S.; Bazighifan, O.; Yavuz, M. Some Important Criteria for Oscillation of Non-Linear Differential Equations with Middle Term. Mathematics 2021, 9, 346. [Google Scholar] [CrossRef]
  17. Liu, H.; Meng, F.; Liu, P. Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 2012, 219, 2739–2748. [Google Scholar] [CrossRef]
  18. Wu, Y.; Yu, Y.; Zhang, J.; Xiao, J. Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type. J. Inequal. Appl. 2016, 2016, 328. [Google Scholar] [CrossRef] [Green Version]
  19. Stavroulakis, I.P. Nonlinear delay differential inequalities. Nonlinear Anal. 1982, 6, 389–396. [Google Scholar] [CrossRef]
  20. Tang, X.H. Oscillation for first order superlinear delay differential equations. J. Lond. Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
  21. Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef] [PubMed]
  22. Yaldız, H.; Agarwal, P. S-convex functions on discrete time domains. Analysis 2017, 37, 179–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bazighifan, O.; Nofal, T.A.; Yavuz, M. Oscillation Results of Emden–Fowler-Type Differential Equations. Symmetry 2021, 13, 410. https://doi.org/10.3390/sym13030410

AMA Style

Bazighifan O, Nofal TA, Yavuz M. Oscillation Results of Emden–Fowler-Type Differential Equations. Symmetry. 2021; 13(3):410. https://doi.org/10.3390/sym13030410

Chicago/Turabian Style

Bazighifan, Omar, Taher A. Nofal, and Mehmet Yavuz. 2021. "Oscillation Results of Emden–Fowler-Type Differential Equations" Symmetry 13, no. 3: 410. https://doi.org/10.3390/sym13030410

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop