Two-Dimensional Divisor Problems Related to Symmetric L-Functions
Abstract
:1. Introduction
2. Some Lemmas
3. Main Theorems
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Application
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deligne, P. La conjecture de Weil. Publ. Math. l’IHÉS 1974, 43, 273–307. [Google Scholar] [CrossRef]
- Barthel, L.; Ramakrishnan, D. A nonvanishing result for twists of L-functions of GL(n). Duke Math. J. 1994, 74, 681–700. [Google Scholar] [CrossRef]
- Chandrasekharan, K.; Narasimhan, R. Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. Math. 1962, 76, 93–136. [Google Scholar] [CrossRef]
- Dong, L.L.; Liu, H.F.; Zhang, D.Y. Zero density estimates for automorphic L-functions of SL(2,Z). Acta Math. Hung. 2016, 148, 191–210. [Google Scholar] [CrossRef]
- Good, A. The square mean of Dirichlet series associated with cusp forms. Mathematika 1982, 29, 278–295. [Google Scholar] [CrossRef]
- Hafner, J.L.; Ivić, A. On sums of Fourier coefficients of cusp forms. L’Enseignement Math. 1989, 35, 375–382. [Google Scholar]
- Jiang, Y.J.; Lü, G.S.; Yan, X.F. Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for SL(m,Z). Math. Proc. Camb. Philos. Soc. 2016, 161, 339–356. [Google Scholar] [CrossRef]
- Lao, H.X. On the fourth moment of coefficients of symmetric square L-function. Chin. Ann. Math. Ser. B 2012, 33, 877–888. [Google Scholar] [CrossRef]
- Lao, H.X. The cancellation of Fourier coefficients of cusp forms over different sparse sequences. Acta Math. Sin. (Engl. Ser.) 2013, 29, 1963–1972. [Google Scholar] [CrossRef]
- Lao, H.X. Mean value of Dirichlet series coefficients of Rankin-Selberg L-functions. Lith. Math. J. 2017, 57, 351–358. [Google Scholar] [CrossRef]
- Lao, H.X. On comparing Hecke eigenvalues of cusp forms. Acta Math. Hung. 2020, 160, 58–71. [Google Scholar] [CrossRef]
- Lao, H.X.; Wei, H.B. Ω-result on coefficients of automorphic L-functions over sparse sequences. J. Korean Math. Soc. 2015, 52, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.M. On the subconvexity estimate for self-dual GL(3)L-functions in the t-aspect. arXiv 2017, arXiv:1703.04424vl. [Google Scholar]
- Rankin, R.A. Contributions to the theory of Ramanujan’s function τ(n) and similar arithemtical functions II. The order of the Fourier coefficients of the integral modular forms. Proc. Camb. Philos. Soc. 1939, 35, 357–372. [Google Scholar] [CrossRef]
- Rankin, R.A. Sums of cusp form coefficients. In Automorphic Forms and Analytic Number Theory (Montreal, PQ, 1989); University Montreal: Montreal, QC, Canada, 1990; pp. 115–121. [Google Scholar]
- Selberg, A. Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist. Arch. Math. Naturvid. 1940, 43, 47–50. [Google Scholar]
- Song, P.; Zhai, W.G.; Zhang, D.Y. Power moments of Hecke eigenvalues for congruence group. J. Number Theory 2019, 198, 139–158. [Google Scholar] [CrossRef]
- Wu, J. Power sums of Hecke eigenvalues and application. Acta Arith. 2009, 137, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.B.; Zhang, D.Y. Zero density for automorphic L-functions. J. Number Theory 2013, 133, 3877–3901. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Lau, Y.K.; Wang, Y.N. Remark on the paper “On products of Fourier coefficients of cusp forms”. Arch. Math. 2017, 108, 263–269. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 2017, 176, 211–225. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup Γ0(N). Ramanujan J. 2018, 47, 685–700. [Google Scholar] [CrossRef]
- Zhang, R.; Han, X.; Zhang, D.Y. Power moments of the Riesz mean error term of symmetric square L-function in short intervals. Symmetry 2020, 12, 2036. [Google Scholar] [CrossRef]
- Hecke, E. Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik. Abh. Math. Sem. Univ. Hambg. 1927, 5, 199–224. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Sankaranarayanan, A.; Tanigawa, Y. A mean value theorem for Dirichlet series and a general divisor problem. Monatshefte Math. 2002, 136, 17–34. [Google Scholar] [CrossRef]
- Fomenko, O.M. Mean value theorems for a class of Dirichlet series. J. Math. Sci. 1999, 157, 659–672. [Google Scholar]
- Lü, G.S. On general divisor problems involving Hecke eigenvalues. Acta. Math. Hung. 2012, 135, 148–159. [Google Scholar] [CrossRef]
- Liu, H.F. Mean value estimates of the coefficients of product L-functions. Acta Math. Hung. 2018, 156, 102–111. [Google Scholar] [CrossRef]
- Liu, H.F.; Zhang, R. Some problems involving Hecke eigenvalues. Acta Math. Hung. 2019, 159, 287–298. [Google Scholar] [CrossRef]
- Lü, G.S.; Sankaranarayanan, A. On the coefficients of triple product L-functions. Rocky Mt. J. Math. 2017, 47, 553–570. [Google Scholar] [CrossRef]
- Iwaniec, H. Topics in Classical Automorphic Forms, Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 1997; Volume 17. [Google Scholar]
- Gelbart, S.; Jacquet, H. A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. l’École Norm. Supér. 1978, 11, 471–542. [Google Scholar] [CrossRef]
- Kim, H.H. Functoriality for the exterior square of GL4 and symmetric fourth of GL2. J. Am. Math. Soc. 2003, 16, 139–183. [Google Scholar] [CrossRef]
- Kim, H.H.; Shahidi, F. Functorial products for GL2 × GL3 and the symmetric cube for GL2. Ann. Math. 2002, 155, 837–893. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Shahidi, F. Cuspidality of symmetric powers with applications. Duke Math. J. 2002, 112, 177–197. [Google Scholar]
- Perelli, A. General L-functions. Ann. Mat. Pura Appl. 1982, 130, 287–306. [Google Scholar] [CrossRef]
- Heath-Brown, D.R. The twelfth power moment of the Riemann zeta-function. Q. J. Math. 1978, 29, 443–462. [Google Scholar] [CrossRef]
- Bourgain, J. Decoupling, exponential sums and the Riemann zeta function. Am. Math. Soc. 2017, 30, 205–224. [Google Scholar] [CrossRef] [Green Version]
- Iwaniec, H.; Kowalski, E. Analytic Number Theory; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 2004; Volume 53. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Liu, H.; Xu, F. Two-Dimensional Divisor Problems Related to Symmetric L-Functions. Symmetry 2021, 13, 359. https://doi.org/10.3390/sym13020359
Huang J, Liu H, Xu F. Two-Dimensional Divisor Problems Related to Symmetric L-Functions. Symmetry. 2021; 13(2):359. https://doi.org/10.3390/sym13020359
Chicago/Turabian StyleHuang, Jing, Huafeng Liu, and Fuxia Xu. 2021. "Two-Dimensional Divisor Problems Related to Symmetric L-Functions" Symmetry 13, no. 2: 359. https://doi.org/10.3390/sym13020359