A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function
Abstract
1. Introduction
2. Some Lemmas
3. Main Results and Some Particular Cases
4. Operator Expressions
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- Yang, B.C. The Norm of Operator and Hilbert-Type Inequalities; Science Press: Beijing, China, 2009. [Google Scholar]
- Yang, B.C. Hilbert-Type Integral Inequalities; Bentham Science Publishers Ltd.: Sharjah, The United Arab Emirates, 2009; Available online: https://benthambooks.com/book/9781608050550/chapter/53554/ (accessed on 10 January 2021).
- Yang, B.C. On the norm of an integral operator and applications. J. Math. Anal. Appl. 2006, 321, 182–192. [Google Scholar] [CrossRef]
- Xu, J.S. Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 2007, 36, 63–76. [Google Scholar]
- Yang, B.C. On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 2007, 325, 529–541. [Google Scholar] [CrossRef]
- Xin, D.M. A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 2010, 30, 70–74. [Google Scholar]
- Yang, B.C. A Hilbert-type integral inequality with the homogenous kernel of degree 0. J. Shandong Univ. (Nat.) 2010, 45, 103–106. [Google Scholar]
- Debnath, L.; Yang, B.C. Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Math. Sci. 2012, 2012, 871845. [Google Scholar] [CrossRef]
- Yang, B.C. A new Hilbert-type integral inequality. Soochow J. Math. 2007, 33, 849–859. [Google Scholar]
- He, B.; Yang, B.C. On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometrc function. Math. Pract. Theory 2010, 40, 105–211. [Google Scholar]
- Yang, B.C. A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. (Sci. Ed.) 2008, 46, 1085–1090. [Google Scholar]
- Zeng, Z.; Xie, Z.T. On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequalities Appl. 2010, 2010, 256796. [Google Scholar] [CrossRef]
- Wang, A.Z.; Yang, B.C. A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequalities Appl. 2011, 2011, 123. [Google Scholar] [CrossRef]
- Xin, D.M.; Yang, B.C. A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree -2. J. Inequalities Appl. 2011, 2011, 401428. [Google Scholar] [CrossRef]
- He, B.; Yang, B.C. On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsul Oxford J. Inf. Math. Sci. 2011, 27, 75–88. [Google Scholar]
- Xie, Z.T.; Zeng, Z.; Sun, Y.F. A new Hilbert-type inequality with the homogeneous kernel of degree -2. Adv. Appl. Math. Sci. 2013, 12, 391–401. [Google Scholar]
- Huang, Q.L.; Wu, S.H.; Yang, B.C. Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, 2014, 169061. [Google Scholar] [CrossRef] [PubMed]
- Zhen, Z.; Gandhi, K.R.R.; Xie, Z.T. A new Hilbert-type inequality with the homogeneous kernel of degree -2 and with the integral. Bull. Math. Sci. Appl. 2014, 3, 11–20. [Google Scholar]
- Rassias, M.T.; Yang, B.C. A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 2015, 428, 1286–1308. [Google Scholar] [CrossRef]
- Huang, X.Y.; Cao, J.F.; He, B.; Yang, B.C. Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. J. Inequalities Appl. 2015, 2015, 129. [Google Scholar] [CrossRef]
- Gu, Z.H.; Yang, B.C. A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequalities Appl. 2015, 2015, 314. [Google Scholar] [CrossRef]
- Hong, Y. On the structure character of Hilbert’s type integral inequality with homogeneous kernal and applications. J. Jilin Univ. (Sci. Ed.) 2017, 55, 189–194. [Google Scholar]
- Rassias, M.T.; Yang, B.C. Equivalent properties of a Hilbert-type integral inequality with the best constant factor related the Hurwitz zeta function. Ann. Funct. Anal. 2018, 9, 282–295. [Google Scholar] [CrossRef]
- Hong, Y.; Huang, Q.L.; Yang, B.C.; Liao, J.Q. The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequalities Appl. 2017, 2017, 316. [Google Scholar] [CrossRef]
- Yang, B.C.; Chen, Q. Equivalent conditions of existence of a class of reverse Hardy-type integral inequalities with nonhomogeneous kernel. J. Jilin Univ. (Sci. Ed.) 2017, 55, 804–808. [Google Scholar]
- Yang, B.C. Equivalent conditions of the existence of Hardy-type and Yang-Hilbert-type integral inequalities with the nonhomogeneous kernel. J. Guangdong Univ. Educ. 2017, 37, 5–10. [Google Scholar]
- Yang, B.C. On some equivalent conditions related to the bounded property of Yang-Hilbert-type operator. J. Guangdong Univ. Educ. 2017, 37, 5–11. [Google Scholar]
- Yang, Z.M.; Yang, B.C. Equivalent conditions of the existence of the reverse Hardy-type integral inequalities with the nonhomogeneous kernel. J. Guangdong Univ. Educ. 2017, 37, 28–32. [Google Scholar]
- Rassias, M.T.; Yang, B.C.; Raigorodskii, A. Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 2018, 12, 273–296. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequalities 2019, 13, 315–334. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C. A reverse Mulholland-type inequality in the whole plane with multi-parameters. Appl. Anal. Discrete Math. 2019, 13, 290–308. [Google Scholar] [CrossRef]
- You, M.H.; Guan, Y. On a Hilbert-type integral inequality with non-homogeneous kernel of mixed hyperbolic functions. J. Math. Inequalities 2019, 13, 1197–1208. [Google Scholar] [CrossRef]
- Gao, P. On weight Hardy inequalities for non-increasing sequence. J. Math. Inequalities 2018, 12, 551–557. [Google Scholar] [CrossRef]
- Liu, Q. A Hilbert-type integral inequality under configuring free power and its applications. J. Inequalities Appl. 2019, 2019, 91. [Google Scholar] [CrossRef]
- Chen, Q.; He, B.; Hong, Y.; Zhen, L. Equivalent parameter conditions for the validity of half-discrete Hilbert-type multiple integral inequality with generalized homogeneous kernel. J. Funct. Spaces 2020, 2020, 7414861. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On Hardy-Type Integral Inequalities in the Whole Plane Related to the Extended Hurwitz-Zeta Function. J. Inequalities Appl. 2020, 94. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.C.; Raigorodskii, A. On the Reverse Hardy-Type Integral Inequalities in the Whole Plane with the Extended Riemann-Zeta Function. J. Math. Inequalities 2020, 14, 525–546. [Google Scholar] [CrossRef]
- Kuang, J.C. Real and Functional Analysis (Continuation) (Second Volume); Higher Education Press: Beijing, China, 2015. [Google Scholar]
- Kuang, J.C. Applied Inequalities; Shangdong Science and Technology Press: Jinan, China, 2004. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rassias, M.T.; Yang, B.; Raigorodskii, A. A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function. Symmetry 2021, 13, 351. https://doi.org/10.3390/sym13020351
Rassias MT, Yang B, Raigorodskii A. A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function. Symmetry. 2021; 13(2):351. https://doi.org/10.3390/sym13020351
Chicago/Turabian StyleRassias, Michael Th., Bicheng Yang, and Andrei Raigorodskii. 2021. "A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function" Symmetry 13, no. 2: 351. https://doi.org/10.3390/sym13020351
APA StyleRassias, M. T., Yang, B., & Raigorodskii, A. (2021). A Hilbert-Type Integral Inequality in the Whole Plane Related to the Arc Tangent Function. Symmetry, 13(2), 351. https://doi.org/10.3390/sym13020351