# The d-Dimensional Cosmological Constant and the Holographic Horizons

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Informational Capacity of a $\mathit{d}$-Dimensional Black Hole

## 3. The Linearization of $\mathit{d}$-Dimensional Friedmann Equations

## 4. “Quantizing” the ${\rho}_{{}_{\Lambda}}$

**Hypothesis**

**1.**

## 5. A Fractal Horizon?

## 6. In Conclusions: A Few More Words on the Koch Snowflakes

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. How to Study a d-Dimensional Friedmann Universe with an Arbitrary Barotropic Equation of State

## References

- Barrow, J.D.; Tipler, F. The Anthropic Cosmological Principle; Oxford University Press: Oxford, UK, 1986; pp. 372–374. [Google Scholar]
- Yurov, A.V.; Astashenok, A.V.; Elizalde, E. The cosmological constant as an eigenvalue of a Sturm–Liouville problem. Astrophys. Space Sci.
**2012**, 349, 25–32. [Google Scholar] - Bekenstein, J.D. Black Holes and Entropy. Phys. Rev.
**1973**, 7, 2333. [Google Scholar] [CrossRef] - Li, M. A model of holographic dark energy. Phys. Lett. B
**2004**, 603, 1–5. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Unifying holographic inflation with holographic dark energy: A covariant approach. Phys. Rev. D
**2020**, 102, 023540. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Covariant generalized holographic dark energy and accelerating universe. Eur. Phys. J. C
**2017**, 77, 528. [Google Scholar] [CrossRef] - Yurov, A.V.; Astashenok, A.V. The linearization method and new classes of exact solutions in cosmology. Theor. Math. Phys.
**2009**, 158, 261–268. [Google Scholar] [CrossRef] [Green Version] - Barrow, J.D. The Area of a Rough Black Hole. Phys. Letts. B
**2020**, 808, 135643. [Google Scholar] [CrossRef] - Barrow, J.D.; Basilakos, S.; Saridakis, E.N. Big Bang Nucleosynthesis constraints on Barrow entropy. arXiv
**2020**, arXiv:2010.00986. [Google Scholar] - Susskind, L. The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics; Little, Brown and Co.: New York, NY, USA, 2008; ISBN 978-0-316-01640-7. [Google Scholar]
- Tangherlini, F.R. Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cim.
**1963**, 2, 636. [Google Scholar] [CrossRef] - Verlinde, E. On the Holographic Principle in a Radiation Dominated Universe. arXiv
**2000**, arXiv:hep-th/0008140. [Google Scholar] - Brevik, I.; Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Cardy-Verlinde formula in FRW Universe with inhomogeneous generalized fluid and dynamical entropy bounds near the future singularity. Eur. Phys. J. C
**2010**, 69, 563–574. [Google Scholar] [CrossRef] - Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B
**1995**, 442, 593–622. [Google Scholar] [CrossRef] [Green Version] - Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a classical metric with quantum threads. Phys. Rev. Lett.
**1992**, 69, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cimento
**1974**, 11, 467. [Google Scholar] [CrossRef] - Mukhanov, V. Are black holes quantized? Pis. Eksp. Teor. Fiz.
**1986**, 44, 50. [Google Scholar] - Bekenstein, J.D.; Mukhanov, V.F. Spectroscopy of the quantum black hole. Phys. Lett. B
**1995**, 360, 7–12. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Quantum Gravity In De Sitter Space. arXiv
**2001**, arXiv:hep-th/0106109. [Google Scholar] - Wheeler, J.A. Geons. Phys. Rev.
**1955**, 97, 511. [Google Scholar] [CrossRef] - Misner, C.; Thorne, K.; Wheeler, J.A. Gravitation; W.H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Van Koch, H. Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire. Arkiv för Matematik
**1904**, 1, 681. [Google Scholar] - Available online: https://www.youtube.com/watch?v=pPb5NKEYCD8 (accessed on 12 December 2020).
- Tipler, F.J. The ultimate fate of life in universes which undergo inflation. Phys. Lett. B
**1992**, 286, 36–43. [Google Scholar] [CrossRef] - Sierpiński, W. Sur une courbe dont tout point est un point de ramification. C. R. Acad. Sci. Paris
**1915**, 160, 302. [Google Scholar] - Menger, K. Allgemeine Räume and Cartesische Räume I. In Proceedings Amsterdam; Edgar, G.A., Ed.; Classics on fractals, Studies in Nonlinearity; Advanced Book Program; Westview Press: Boulder, CO, USA, 1926; Volume 29, pp. 476–482. [Google Scholar]
- Bekenstein, J.D. Black holes and the second law. Lett. Nuovo Cim.
**1972**, 4, 737. [Google Scholar] [CrossRef] - Barrow, J.D. Maximum Force and Naked Singularities in Higher Dimensions. arXiv
**2020**, arXiv:2005.06809. [Google Scholar] - Hawking, S.; Ellis, G. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Barrow, J.D. Finite Action Principle Revisited. Phys. Rev. D
**2020**, 101, 023527. [Google Scholar] [CrossRef] [Green Version] - Barrow, J.D.; Tipler, F.J. Action principles in nature. Nature
**1988**, 331, 31. [Google Scholar] [CrossRef] - Yurov, A.V.; Moruno, P.M.; González-Díaz, P.F. New “Bigs” in cosmology. Nucl. Phys. B
**2006**, 759, 320–341. [Google Scholar] [CrossRef] - Oikonomou, V.K. Is a topology change after a Big Rip possible? Int. J. Geom. Methods Mod. Phys.
**2019**, 16, 1950048. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yurov, A.V.; Yurov, V.A.
The *d*-Dimensional Cosmological Constant and the Holographic Horizons. *Symmetry* **2021**, *13*, 237.
https://doi.org/10.3390/sym13020237

**AMA Style**

Yurov AV, Yurov VA.
The *d*-Dimensional Cosmological Constant and the Holographic Horizons. *Symmetry*. 2021; 13(2):237.
https://doi.org/10.3390/sym13020237

**Chicago/Turabian Style**

Yurov, Artyom V., and Valerian A. Yurov.
2021. "The *d*-Dimensional Cosmological Constant and the Holographic Horizons" *Symmetry* 13, no. 2: 237.
https://doi.org/10.3390/sym13020237