Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups
Abstract
:1. Introduction
2. Preliminaries
3. Commutators and Weighted Interpolation Inequalities
4. Proofs of the Main Theorems
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Commun. Pure Appl. Math. 1959, 12, 623–727. [Google Scholar] [CrossRef]
- Calderón, A.P.; Zygmund, A. Singular integral operators and differential equations. Am. J. Math. 1957, 79, 901–921. [Google Scholar] [CrossRef]
- Coifman, R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103, 611–635. [Google Scholar] [CrossRef]
- Chiarenza, F.; Frasca, M.; Longo, P. Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche Mat. 1991, 40, 149–168. [Google Scholar]
- Bramanti, M.; Cerutti, M.C. Wp1,2 solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial. Differ. Equ. 1993, 18, 1735–1763. [Google Scholar] [CrossRef]
- Morrey, C.B. On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 1938, 43, 126–166. [Google Scholar] [CrossRef]
- Peetre, J. On the theory of Lp,λ space. J. Funct. Anal. 1969, 4, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.R. A note on Riesz potentials. Duke Math. J. 1975, 42, 765–778. [Google Scholar] [CrossRef]
- Chiarenza, F.; Frasca, M. Morrey spaces and Hardy–Littlewood maximal function. Rend. Mat. Appl. 1987, 7, 273–279. [Google Scholar]
- Komori, Y.; Shirai, S. Weighted Morrey spaces and a singular integral operator. Math. Nachr. 2009, 282, 219–231. [Google Scholar] [CrossRef]
- Di Fazio, G.; Ragusa, M.A. Interior estimates in Morrey spaces for strongly solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 1993, 112, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Chiarenza, F.; Frasca, M.; Longo, P. W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 1993, 336, 841–853. [Google Scholar]
- Caffarelli, L.A.; Peral, I. On W1,p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math. 1998, 51, 1–21. [Google Scholar] [CrossRef]
- Di Fazio, G.; Palagachev, D.K.; Ragusa, M.A. Global Morrey regularity of strong solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients. J. Funct. Anal. 1999, 166, 179–196. [Google Scholar] [CrossRef] [Green Version]
- Palagachev, D.K. Quasilinear elliptic equations with VMO coefficients. Trans. Am. Math. Soc. 1995, 347, 2481–2493. [Google Scholar] [CrossRef]
- Palagachev, D.K.; Softova, L.G. Singular integral operators, Morrey spaces and fine regularity of solutions to PDE’s. Potential Anal. 2004, 20, 237–263. [Google Scholar] [CrossRef]
- Polidoro, S.; Ragusa, M.A. Sobolev–Morrey spaces related to an ultraparabolic equation. Manuscripta Math. 1998, 96, 371–392. [Google Scholar] [CrossRef]
- Hörmander, L. Hypoelliptic second order differential equations. Acta Math. 1967, 119, 147–161. [Google Scholar] [CrossRef]
- Lu, G.Z. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s conditions and applications. Rev. Mat. Iberoam. 1992, 8, 367–439. [Google Scholar] [CrossRef] [Green Version]
- Folland, G.B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 1975, 13, 161–207. [Google Scholar] [CrossRef]
- Bramanti, M.; Brandolini, L. Lp estimates for uniformly hypoelliptic operators with discontinuous coefficients on homogeneous groups. Rend. Sem. Mat. Univ. Politec. Torino 2000, 58, 389–433. [Google Scholar]
- Niu, P.C.; Feng, X.J. Local Sobolev–Morrey estimates for nondivergence operators with drift on homogeneous groups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2014, 108, 683–709. [Google Scholar]
- Gutiérrez, C.E.; Lanconelli, E. Schauder estimates for sub-elliptic equations. J. Evol. Equ. 2009, 9, 707–726. [Google Scholar] [CrossRef]
- Bramanti, M.; Zhu, M. Lp and schauder estimates for nonvariational operators structured on hörmander vector fields with drift. Anal. PDE 2013, 6, 1793–1855. [Google Scholar] [CrossRef] [Green Version]
- Lanconelli, E.; Polidoro, S. On a class of hypoelliptic evolution operators. Rend. Sem. Mat. Univ. Politec. Torino 1994, 52, 29–63. [Google Scholar]
- Manfredini, M.; Polidoro, S. Interior regularity for weak solutions of ultraparabolic equations in divergence form with discontinuous coefficients. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. 1998, 1, 651–675. [Google Scholar]
- Pascucci, A.; Polidoro, S. On the Harnack inequality for a class of hypoelliptic evolution operators. Trans. Am. Math. Soc. 2004, 356, 4383–4394. [Google Scholar] [CrossRef] [Green Version]
- Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F. Stratified Lie Groups and Potential Theory for Their Sub-Laplacians; Springer-Verlag: Berlin, Germany, 2007; pp. 227–232. [Google Scholar]
- Capogna, L.; Danielli, D.; Pauls, S.D.; Tyson, J. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem; Birkhäuser-Verlag: Basel, Switzerland, 2007; pp. 11–37. [Google Scholar]
- Folland, G.B.; Stein, E.M. Estimates for the complex and analysis on the Heisenberg group. Commun. Pure Appl. Math. 1974, 27, 429–522. [Google Scholar] [CrossRef]
- Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function. Trans. Am. Math. Soc. 1972, 165, 207–226. [Google Scholar] [CrossRef]
- Join, F.; Nirenberg, L. On functions of bounded mean oscillation. Commun. Pure Appl. Math. 1961, 14, 415–426. [Google Scholar] [CrossRef]
- Sarason, D. Functions of vanishing mean oscillation. Trans. Am. Math. Soc. 1975, 207, 391–405. [Google Scholar] [CrossRef]
- Hou, Y.X.; Niu, P.C. Weighted Sobolev–Morrey estimates for hypoelliptic operators with drift on homogeneous groups. J. Math. Anal. Appl. 2015, 428, 1319–1338. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Y. Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups. Symmetry 2021, 13, 2061. https://doi.org/10.3390/sym13112061
Hou Y. Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups. Symmetry. 2021; 13(11):2061. https://doi.org/10.3390/sym13112061
Chicago/Turabian StyleHou, Yuexia. 2021. "Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups" Symmetry 13, no. 11: 2061. https://doi.org/10.3390/sym13112061
APA StyleHou, Y. (2021). Weighted Sobolev–Morrey Estimates for Nondivergence Degenerate Operators with Drift on Homogeneous Groups. Symmetry, 13(11), 2061. https://doi.org/10.3390/sym13112061