Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis
Abstract
:1. What Is Life?
2. Water—Essential Prerequisite of Life
3. Chemical Composition of Living Matter
4. Prebiotic Organic Chemistry on Earth
5. Origins of Biological Homochirality
6. Life and Oxygen in the Atmosphere
44 18 30 32 (g/mol)
7. Concluding Remarks
- −
- Because of the invariant chirality of weak interactions, all primary particles compose a homochiral pool of building elements for the construction of atoms and molecules. In contrast, all leptons (photons and muons) exist as a racemic form of energy quanta.
- −
- Plasma reactors resulting from the super-high-velocity collisions of cosmic bodies generate mixtures of organic compounds, whose amount and composition are determined by the occasional content of the plasma torch-involved material.
- −
- All organic compounds synthesized in a plasma torch acquire preferred configurations that correspond to the invariant chirality of fundamental weak interactions; the forms dominating everywhere are L-amino acids and D-carbohydrates.
- −
- The mechanisms further enhancing the extent of homochirality in the complex mixture of organic compounds remain unclear.
- −
- The presence of large amounts of water in its liquid state on any planet is the essential prerequisite for life to emerge, since water is the only unique natural solvent compatible with both polar organic compounds and mineral electrolytes.
- −
- Any living matter must be based on the abundant light elements C, H, O, N, S, and P, for the reason that they are able to interact with each other and form chains; many other elements are also needed, though in small numbers.
- −
- Life most likely emerged in a small aqueous pool that received, from time to time, additional portions of the globally produced from and distributed in the ocean; the pool frequently evaporated, which resulted in concentrating the primordial soup and enhancing contacts of the compounds with solid minerals.
- −
- The organic compounds most useful and available in numerous variants are alpha-amino acids, nucleic bases, carbohydrates, and, carbonic acids, since they are prone to form polymeric chains or large associates. The selection of particular compounds and polymers for composing the first self-reproducing scaffolded protocell is a matter of pure chance and remains a complete black box of early evolution.
- −
- Water vapors are constantly subjected to photolysis by cosmic irradiation, followed by hydrogen escaping to space and oxygen largely retained within the planet; under certain conditions, oxygen may form, an oxygenating the atmosphere, but this is not a clear indication of the existence of living organisms on the planet.
Funding
Conflicts of Interest
References
- Schrödinger, E. What Is Life? With Mind and Matter and Autobiographical Sketches; Cambridge University Press: Cambridge, UK, 1992; p. 184. [Google Scholar]
- Benner, S.A. Defining Life. Astrobiology 2010, 10, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifonov, E.N. Vocabulary of definitions of life suggests a definition. J. Biomol. Struct. Dyn. 2011, 29, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirard, S.; Morange, M.; Lazcano, A. The Definition of Life: A Brief History of an Elusive Scientific Endeavor. Astrobiology 2010, 10, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.D. A new definition of life. Chirality 2009, 21, 354–358. [Google Scholar] [CrossRef]
- Lozinsky, V.I. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020, 6, 29. [Google Scholar] [CrossRef]
- Oparin, A.I. The Origin of Life. In The Origin of Life; Bernal, J.D., Ed.; Weidenfeld and Nicolson: London, UK, 1967; (Russian orig. 1924). [Google Scholar]
- Deamer, D. Salty seawater or a warm little pond: Where did life begin? Acad. Lett. 2020, 105, 2. [Google Scholar] [CrossRef]
- Omran, A.; Pasek, M. A Constructive Way to Think about Different Hydrothermal Environments for the Origins of Life. Life 2020, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stueken, E.E.; Anderson, R.E.; Bowman, J.S.; Brazelton, W.J.; Colangelo-Lillis, J.; Goldman, A.D.; Somi, S.M.; Baross, J.A. Did life originate from a global chemical reactor? Geobiology 2013, 11, 101–126. [Google Scholar] [CrossRef]
- Bywater, R.P.; Conde-Frieboes, K. Hypothesis Paper: Did Life Begin the Beach? Astrobiology 2005, 5, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M. How the first life on Earth survived its biggest threat—Water. Nature 2020, 588, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Aston, F.W. Atomic species and their abundance on the earth. Nature 1924, 113, 393–395. [Google Scholar] [CrossRef] [Green Version]
- Aston, F.W. The rarity of the inert gases on the Earth. Nature 1924, 114, 786. [Google Scholar] [CrossRef]
- Boyce, J.C.; Menzel, D.H.; Payne, C.H. Forbidden lines in astrophysical sources. Proc. Natl. Acad. Sci. USA 1933, 19, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Zahnle, K.J.; Lupu, R.; Catling, D.C.; Wogan, N. Creation and Evolution of Impact-generated Reduced Atmospheres of Early Earth. Planet. Sci. J. 2020, 1, 11–32. [Google Scholar] [CrossRef]
- Miller, S.L. Production of some organic compounds under possible primitive earth conditions. J. Am. Chem. Soc. 1955, 77, 2351–2361. [Google Scholar] [CrossRef]
- Weber, A.L.; Miller, S.L. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 1981, 17, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Ring, D.; Miller, S.L. The spark discharge synthesis of amino acids from various hydrocarbons. Orig. Life Evol. Biosph. 1984, 15, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lawless, J.G.; Boynton, C.D. Thermal synthesis of amino acids from a simulated primitive atmosphere. Nature 1973, 243, 405–407. [Google Scholar] [CrossRef]
- Simionescu, C.I.; Totolin, M.I.; Denes, F. Abiotic synthesis of some polysaccharide-like and polypeptide-like structures in cold plasma. Bio Systems 1976, 8, 153–158. [Google Scholar] [CrossRef]
- Calvin, M. Chemical evolution and life. Chem. Brit. 1969, 5, 22–28. [Google Scholar]
- Bar-Nun, A.; Bar-Nun, N.; Bauer, S.N.; Sagan, C. Shock synthesis of amino acids in simulated primitive environments. Science 1970, 168, 470–472. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.; Price, M.C.; Goldman, N.; Sephton, M.A.; Burchell, M.J. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues. Nat. Geosci. 2013, 6, 1045–1049. [Google Scholar] [CrossRef]
- Goldman, N.; Tamblyn, I. Prebiotic chemistry within a simple impacting icy mixture. J. Phys. Chem. A 2013, 117, S124–S131. [Google Scholar] [CrossRef] [Green Version]
- Managadze, G.G. The synthesis of organic molecules in a laser plasma similar to the plasma that emerges in hypervelocity collisions of matter at the early evolution stage of the Earth and in interstellar clouds. J. Experim. Phys. 2003, 97, 49–60. [Google Scholar] [CrossRef]
- Managadze, G.G.; Brinckerhoff, W.B.; Managadze, N.G.; Chumikov, A.E. Identification of amino acids abiogenously synthesized in the plasma torch, modeling torch of super-high-velocity impact. Space Res. Inst. Russ. Acad. Sci. 2006, 23, 134–140. [Google Scholar]
- Johnson, A.P.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L. The Miller volcanic spark discharge experiment. Science 2008, 322, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Managadze, G. A new universal mechanism of organic compounds synthesis during prebiotic evolution. Planet. Space Sci. 2007, 55, 134–140. [Google Scholar] [CrossRef]
- Baross, J.A. The rocky road to biomolecules. Nature 2018, 564, 42–43. [Google Scholar] [CrossRef] [PubMed]
- Preiner, M.; Igarashi, K.; Muchowska, K.B.; Mingquan, Y.; Varma, S.J.; Kleinermanns, K.; Nobu, M.K.; Kamagata, Y.; Tüysüz, H.; Moran, J.; et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 2020, 4, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Preiner, M.; William, F.; Martin, W.F. Life in a carbon dioxide world. Nature 2021, 592, 688–689. [Google Scholar] [CrossRef]
- Powner, M.W.; Gerland, B.; Sutherland, J.D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.H.; Percivalle, C.; Ritson, D.J.; Duffy, C.D.; Sutherland, J.D. A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent. Nat. Chem. 2015, 7, 301–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, A.; Russell, D.A.; Javelle, T.; Sutherland, J. A Light-Releasable Potentially Prebiotic Nucleotide Activating Agent J. Am. Chem. Soc. 2018, 140, 8657–8661. [Google Scholar] [CrossRef] [Green Version]
- Song, E.Y.; Jimenez, E.I.; Lin, H.; Le Vay, K.; Krishnamurthy, R.; Mutschler, H. Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation. Angew. Chem. Int. Ed. 2021, 60, 2952–2957. [Google Scholar] [CrossRef]
- Saladino, R.; Crestini, C.; Pino, S.; Costanzo, G.; Di Mauro, E. Review. Formamide and the origin of life. Phys. Life Rev. 2011, 9, 84–104. [Google Scholar] [CrossRef] [PubMed]
- Saladino, R.; Botta, G.; Pino, S.; Costanzo, G.; Di Mauro, E. Mini-review. From the one-carbon amide formamide to RNA all the steps are prebiotically possible. Biochimie 2012, 94, e1451–e1456. [Google Scholar] [CrossRef]
- Pino, S.; Sponer, J.E.; Costanzo, G.; Saladino, R.; Di Mauro, E. From Formamide to RNA, the Path Is Tenuous but Continuous. Life 2015, 5, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Saladino, R.; Botta, G.; Pino, S.; Costanzo, G.; Di Mauro, E. Genetics first or metabolism first? The formamide cluew. Chem. Soc. Rev. 2012, 41, 5526–5565. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.; Blumenstock, T.; Taraborrelli, D. Ubiquitous atmospheric production of organic acids mediated by cloud droplets. Nature 2021, 593, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Monnard, P.-A. Review: Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Life 2016, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dörr, M.; Löffler, P.M.G.; Monnard, P.-A. Non-enzymatic Polymerization of Nucleic Acids from Monomers: Monomer Self-Condensation and Template-Directed Reactions. Curr. Org. Synth. 2012, 9, 1–29. [Google Scholar] [CrossRef]
- Nikitin, N. Proishoshdenie Shisni. Ot Tumannosti do Kletki. (Origine of Life. From a Nebula to a Cell.); Primus: Moscow, Russia, 2016; pp. 131–184. ISBN 978-5-91671-584-2. [Google Scholar]
- Commeyras, A.; Collet, H.; Boiteau, L.; Taillades, J.; Vandenabeele-Trambouze, O.; Cottet, H.; Biron, J.-P.; Plasson, R.; Mion, L.; Lagrille, O.; et al. Featured Article. Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polym. Int. 2002, 51, 661–665. [Google Scholar] [CrossRef]
- Izgu, E.C.; Björkbom, A.; Kamat, N.P.; Lelyveld, V.S.; Zhang, W.; Jia, T.Z.; Szostak, J.W. N-Carboxyanhydride-Mediated Fatty Acylation of Amino Acids and Peptides for Functionalization of Protocell Membranes. J. Am. Chem. Soc. 2016, 138, 16669–16676. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.P.; Sawant, A.A.; Rajamani, S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid–amino acid mixture under wet–dry cycles. Chem. Sci. 2021, 12, 2970–2978. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The RNA World and the Origins of Life. In Molecular Biology of the Cell; NCBI Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Atkins, J.F.; Gesteland, R.F.; Cech, T. The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World. In Plainview; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2006; p. 758. ISBN 0-87969-739-3. [Google Scholar]
- Stern, R.; Jedrzejas, M.J. Carbohydrate polymers at the center of life’s origins: The importance of molecular processivity. Chem. Rev. 2008, 108, 5061–5085. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D.; Dworkin, J.P.; Sandford, S.A.; Bernstein, M.P.; Allamandola, L.J. The first cell membranes. Astrobiology 2002, 2, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Altshtein, A.D. Origin of the genetic system: Progene hypothesis. Mol. Biol. 1987, 21, 309–321. [Google Scholar]
- Malaterr, C. Lifeness signatures and the roots of the tree of life. Preprint. Biol. Philos. 2010, 1, 18. [Google Scholar] [CrossRef]
- Mariscal, С.; Barahona, A.; Aubert-Kato, N.; Umur Aydinoglu, A.; Bartlett, S.; Cárdenas, M.L.; Chandru, K.; Cleland, C.; Cocanougher, B.T.; Comfort, N.; et al. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: A Workshop Report. Orig. Life Evol. Biosph. 2019, 49, 111–145. [Google Scholar] [CrossRef]
- Andrulis, E.D. Theory of the Origin, Evolution, and Nature of Life. Life 2012, 2, 1–105. [Google Scholar] [CrossRef] [Green Version]
- Follmann, H.; Brownson, C. Darwin’s warm little pond revisited: From molecules to the origin of life. Naturwissenschaften 2009, 96, 1265–1292. [Google Scholar] [CrossRef] [PubMed]
- Shanta, B.N. Sorry, Darwin: Chemistry Never Made the Transition to Biology. ResearchGate 2015. Available online: https://www.academia.edu/3856660/SORRY_DARWIN_CHEMISTRY_NEVER_MADE_THE_TRANSITION_TO_BIOLOGY (accessed on 25 June 2021). [CrossRef]
- Fishkis, M. Emergence of Self-Reproduction in Cooperative Chemical Evolution of Prebiological Molecules. Orig. Life Evol. Biosph. 2010, 41, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Carels, N. A History of Genomic Structures: The Big Picture. In Plant Genome Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K.V., Eds.; Plant Biology and Biotechnology Springer: New Delhi, India, 2015; Volume 2, pp. 131–178. [Google Scholar]
- Malaterre, C. Can Synthetic Biology Shed Light on the Origins of Life? Biol. Theory 2009, 4, 357–367. [Google Scholar] [CrossRef]
- Bada, J.L. How life began on Earth: A status report. Earth Planet. Sci. Lett. 2004, 226, 1–15. [Google Scholar] [CrossRef]
- Brasier, M.D.; Green, O.R.; McLoughlin, N. Characterization and critical testing of potential microfossils from the early Earth: The Apex ‘microfossil debate’ and its lessons for Mars sample return. Int. J. Astrobiol. 2004, 3, 139–150. [Google Scholar] [CrossRef]
- Rouch, D.A. Evolution of the first genetic cells and the universal genetic code: A hypothesis based on macromolecular coevolution of RNA and proteins. J. Theor. Biol. 2014, 357, 220–244. [Google Scholar] [CrossRef]
- Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct 2012, 7, 23. Available online: http://www.biology-direct.com/content/7/1/23 (accessed on 25 June 2021). [CrossRef] [Green Version]
- Davankov, V.A. Inherent Homochirality of Primary Particles and Meteorite Impacts as Possible Source of Prebiotic Molecular Chirality. Russ. J. Phys. Chem. 2009, 83, 1247–1256. [Google Scholar] [CrossRef]
- Davankov, V.A. Homochirality of Organic Matter—Objective Law or Curious Incident? Isr. J. Chem. 2016, 56, 1036–1041. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Molecular homochirality and the parity-violating energy difference. A critique with new proposals. Chirality 2008, 20, 84–95. [Google Scholar]
- Schurig, V. On the Centenary of Emanuel Gil-Av, Former Professor of the Weizmann Institute of Science and Pioneer of Enantioselective Chromatography. Isr. J. Chem. 2016, 56, 890–906. [Google Scholar] [CrossRef]
- Davankov, V.A. Resolution of Racemates by Ligand-Exchange Chromatography. In Advances in Chromatography; By Giddings, J.C., Grushka, E., Cazes, J., Brown, P.R., Eds.; Marcel Dekker: New York, NY, USA, 1980; Volume 18, pp. 139–196. [Google Scholar]
- Myrgorodska, I.; Meinert, C.; Martins, Z.; Le Sergeant, L.; d’Hendecourt, L.; Meierhenrich, U.J. Molecular Chirality in meteorites and interstellar ices, and the chirality experiment on board the ESA Cometary Rosetta Mission. Angew. Chem. Int. Ed. 2015, 54, 1402–1412. [Google Scholar] [CrossRef]
- Pizzarello, S.; Schrader, D.L.; Monroe, A.A.; Lauretta, D.S. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 11949–11954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glavin, D.P.; Dworkin, J.P. Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc. Natl. Acad. Sci. USA 2009, 106, 5487–5492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartmess, J.E.; Pagni, R.M. A photochemical mechanism for homochirogenesis. Part 2. Chirality 2013, 25, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Avalos, M.; Babiano, R.; Cintas, P.; Jime’nez, J.L.; Palacios, J.C.; Barron, L.D. Absolute Asymmetric Synthesis under Physical Fields: Facts and Fictions. Chem. Rev. 1998, 98, 2391–2404. [Google Scholar] [CrossRef] [PubMed]
- Davankov, V.A. Biological Homochirality on the Earth, or in the Universe? A Selective Review. Symmetry 2018, 10, 749. [Google Scholar] [CrossRef] [Green Version]
- Famiano, M.; Boyd, R.; Kajino, T.; Onaka, T.; Koehler, K.; Hulbert, S. Determining Amino Acid Chirality in the Supernova Neutrino Processing Model. Symmetry 2014, 6, 909–925. [Google Scholar] [CrossRef] [Green Version]
- Sugahara, H.; Meinert, C.; Nahon, L.; Jones, N.C.; Hoffmann, S.V.; Hamase, K.; Takano, Y.; Meierhenrich, U.J. d-Amino acids in molecular evolution in space—Absolute asymmetric photolysis and synthesis of amino acids by circularly polarized light. Biochimica et Biophysica Acta (BBA). Proteins Proteom. 2018, 1866, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.D.; Meinert, C.; Sugahara, H.; Jones, N.C.; Hoffmann, S.V.; Meierhenrich, U.J. The Astrophysical Formation of Asymmetric Molecules and the Emergence of a Chiral Bias. Life 2019, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Modica, P.; Meinert, C.; De Marcellus, P.; Nahon, L.; Meierhenrich, U.J.; d’Hendecourt, L.S. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: A possible source of asymmetry for prebiotic chemistry. Astrophys. J. 2014, 788, 79. [Google Scholar] [CrossRef]
- Davankov, V.A. Chirality as an Inherent General Property of Matter. Chirality 2006, 18, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, A.D. Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pis’ma Z. Eksp. Teor. Fiz. 1967, 5, 32–35. [Google Scholar]
- Lee, T.D.; Yang, C.N. Question of parity conservation in weak interactions. Phys. Rev. 1956, 104, 254–258. [Google Scholar] [CrossRef]
- Wu, C.S.; Ambler, E.; Hayward, R.W.; Hoppes, D.; Hudson, R. Experimental test of parity conservation in beta decay. Phys. Rev. 1957, 105, 1413–1415. [Google Scholar] [CrossRef]
- Abe, K.; Akutsu, R. The T2K Collaboration, Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020, 580, 339–344. [Google Scholar] [CrossRef]
- Emmons, T.P.; Reeves, J.M.; Forson, E.N. Parity-Nonconserving Optical Rotation in Atomic Lead. Phys. Rev. Lett. 1983, 51, 2089–2092. [Google Scholar] [CrossRef]
- Tranter, G.E. The parity-violating energy difference between enantiomeric reactions. Chem. Phys. Lett. 1985, 115, 286–290. [Google Scholar] [CrossRef]
- Quack, M. How important is parity violation for molecular and biomolecular chirality? Angew. Chem. Int. Ed. 2002, 41, 4618–4630. [Google Scholar] [CrossRef]
- Buschmann, H.; Thede, R.; Heller, D. New developments in the origins of homochirality of biologically relevant molecules. Angew. Chem. Int. Ed. 2000, 39, 4033–4036. [Google Scholar] [CrossRef]
- Hawbaker, N.A.; Blackmond, D.G. Energy threshold for chiral symmetry breaking in molecular self-replication. Nat. Chem. 2019, 11, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Managadze, G. Plasma and collision processes of hypervelocity meteorite impact in the prehistory of life. Int. J. Astrobiol. 2010, 9, 157–174. [Google Scholar] [CrossRef]
- Managadze, G.G.; Engel, M.H.; Getty, S.; Wurz, P.; Brinckerhoff, W.B.; Shokolov, A.G.; Sholin, G.V.; Terent’ev, S.A.; Chumikov, A.E.; Skalkin, A.S.; et al. Excess of L-alanine in amino acids synthesized in a plasma torch generated by a hypervelocity meteorite impact reproduced in the laboratory. Planet. Space Sci. 2016, 131, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Chu, J. Study Pinpoints Timing of Oxygen’s First Appearance in Earth’s Atmosphere. Mit News. 13 May 2016. Available online: http://news.mit.edu/2016/oxygen-first-appearance-earth-atmosphere-0513 (accessed on 25 June 2021).
- Cloud, P.E. Atmospheric and hydrospheric evolution on the primitive Earth. Science 1968, 160, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Rosen, J.; Egger, A.E. History of Earth’s Atmosphere, I. The Origin of the Modern Atmosphere. Visionlearning 2014, 2. Available online: https://www.visionlearning.com/en/library/Earth-Science/6/History-of-Earths-Atmosphere-I/202 (accessed on 25 June 2021).
- Rosen, J.; Egger, A.E. History of Earth’s Atmosphere II. The Rise of Atmospheric Oxygen. Visionlearning 2014, 3. Available online: https://www.visionlearning.com/en/library/Earth-Science/6/History-of-Earths-Atmosphere-II/203 (accessed on 25 June 2021).
- Schidlowski, M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 1988, 333, 313–318. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Cann, J.R.; van Dover, C.L. Origins of photosynthesis. Nature 1995, 373, 479–480. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Sleep, N.H. The habitat and nature of early life. Nature 2001, 409, 1083–1891. [Google Scholar] [CrossRef]
- Widdel, F.; Schnell, S.; Heising, S.; Ehrenreich, A.; Assmus, B.; Schink, B. Ferrous iron oxidation by anoxygenic photosynthetic bacteria. Nature 1993, 362, 834–836. [Google Scholar] [CrossRef]
- Bassez, M.-P. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. Orig. Life Evol. Biosph. 2017, 47, 453–480. [Google Scholar] [CrossRef]
- Bassez, M.-P. Water near its Supercritical Point and at Alkaline pH for the Production of Ferric Oxides and Silicates in Anoxic Conditions. A New Hypothesis for the Synthesis of Minerals Observed in Banded Iron Formations and for the Related Geobiotropic Chemistry inside Fluid Inclusions. Orig. Life Evol. Biosph. 2018, 48, 289–320. [Google Scholar] [CrossRef] [Green Version]
- Des Marais, D.J. When did photosynthesis emerge on Earth? Science 2000, 289, 1703–1705. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Phillips, R.; Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 2018, 115, 6506–6511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davankov, V.A. Mystery of Earth atmosphere. Chem. Life XXI Century 1998, 6, 76. [Google Scholar]
- Davankov, V.A. Critical review on the origin of atmospheric oxygen: Where is organic matter? Planet. Space Sci. 2020, 190, 105023. [Google Scholar] [CrossRef]
- Hunten, D.M.; Pepin, R.O.; Walker, J.G.G. Mass fractionation in hydrodynamic escape. Icarus 1987, 69, 532–549. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.H. The effect of photoionization on the loss of water of the planet. Astrophys. J. 2019, 872, 99–120. [Google Scholar] [CrossRef]
- Davankov, V.A. Mystery of the atmospheric oxygen: Photosynthesis or photolysis? Rus. J. Phys. Chem. 2021, 95, 1963–1970. [Google Scholar] [CrossRef]
- Joseph, R.G.; Duxbury, N.S.; Kidron, G.J.; Gibson, C.H.; Schild, R. Mars: Life, Subglacial Oceans, Abiogenic Photosynthesis, Seasonal Increases and Replenishment of Atmospheric Oxygen. Open Astron. 2020, 29, 1–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davankov, V.A. Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry 2021, 13, 1918. https://doi.org/10.3390/sym13101918
Davankov VA. Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry. 2021; 13(10):1918. https://doi.org/10.3390/sym13101918
Chicago/Turabian StyleDavankov, Vadim A. 2021. "Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis" Symmetry 13, no. 10: 1918. https://doi.org/10.3390/sym13101918
APA StyleDavankov, V. A. (2021). Chance and Necessity in the Evolution of Matter to Life: A Comprehensive Hypothesis. Symmetry, 13(10), 1918. https://doi.org/10.3390/sym13101918