Non-Extensive Thermodynamics Effects in the Cosmology of f(T) Gravity
Abstract
:1. Introduction
Historical Review and Introductory Remarks
2. Essential Features of Gravity
- Torsion tensor
- Contortion TensorThe contortion tensor is skew symmetric in its first pair of indices as it is clear from Equation (10).
- Superpotential
3. Including Non-Extensive Thermodynamics Effects in Gravity
- The Black Hole entropyThe black hole entropy, namely the Bekenstein−Hawking entropy, is defined as follows [81],
- Entropy and Linkage
3.1. Late-Time Evolution of the Universe
3.2. Evolution Including Relativistic Matter
3.3. The Distance Modulus within Non-Extensive -Gravity
4. Results of Our Numerical Analysis and Confrontation with the Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boltzmann, L. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen; Springer: Berlin/Heidelberg, Germany, 1970; pp. 115–225. [Google Scholar]
- Gibbs, J.W. Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundations of Thermodynamics; C. Scribner’s Sons: New York, NY, USA, 1902. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; Waveland Press, Inc.: Long Grove, IL, USA, 2009. [Google Scholar]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Umarov, S.; Tsallis, C. On multivariate generalizations of the q-central limit theorem consistent with nonextensive statistical mechanics. In Complexity, Metastability, and Nonextensivity; Abe, S., Herrmann, H., Quarati, P., Rapisarda, A., Tsallis, C., Eds.; American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2007; Volume 965, pp. 34–42. [Google Scholar]
- Rath, R.; Tripathy, S.; Chatterjee, B.; Sahoo, R.; Kumar Tiwari, S.; Nath, A. Violation of Wiedemann-Franz Law for Hot Hadronic Matter created at NICA, FAIR and RHIC Energies using Non-extensive Statistics. Eur. Phys. J. A 2019, 55, 125. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Nonextensive statistical mechanics: A brief review of its present status. arXiv 2002, arXiv:cond-mat/0205571. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C. Computational applications of nonextensive statistical mechanics. J. Comput. Appl. Math. 2009, 227, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Gell-Mann, M. The Quark and the Jaguar: Adventures in the Simple and the Complex; Macmillan: New York, NY, USA, 1995. [Google Scholar]
- Holovatch, Y.; Kenna, R.; Thurner, S. Complex systems: Physics beyond physics. Eur. J. Phys. 2017, 38, 023002. [Google Scholar] [CrossRef]
- Tsallis, C. Nonextensive statistical mechanics: Applications to high energy physics. Eur. Phys. J. Web Conf. 2011, 13, 05001. [Google Scholar] [CrossRef] [Green Version]
- Plastino, A.; Plastino, A. Stellar polytropes and Tsallis’ entropy. Phys. Lett. A 1993, 174, 384–386. [Google Scholar] [CrossRef]
- Plastino, A.; Plastino, A.R. Tsallis entropy and Jaynes’ Information Theory formalism. Braz. J. Phys. 1999, 29, 50–60. [Google Scholar] [CrossRef]
- Plastino, A.R. Sq entropy and selfgravitating systems. Europhys. News 2005, 36, 208–210. [Google Scholar] [CrossRef] [Green Version]
- Megías, E.; Menezes, D.P.; Deppman, A. Nonextensive thermodynamics with finite chemical potentials and protoneutron stars. Eur. Phys. J. Web Conf. 2014, 80, 40. [Google Scholar] [CrossRef] [Green Version]
- Abe, S.; Okamoto, Y. Nonextensive Statistical Mechanics and Its Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 560. [Google Scholar]
- Riess, A.G.; Strolger, L.G.; Tonry, J.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Chornock, R. Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 2004, 607, 665–687. [Google Scholar] [CrossRef] [Green Version]
- Rubin, V.C.; Ford, W.K., Jr.; Thonnard, N. Extended rotation curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties, Sa -> Sc. Astrophys. J. 1978, 225, L107–L111. [Google Scholar] [CrossRef]
- Faber, S.M.; Gallagher, J.S. Masses and mass-to-light ratios of galaxies. Annu. Rev. Astron. Astrophys. 1979, 17, 135–187. [Google Scholar] [CrossRef]
- Fabricant, D.; Lecar, M.; Gorenstein, P. X-ray measurements of the mass of M 87. Astrophys. J. 1980, 241, 552–560. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Agatsuma, K. GW190521: A Binary Black Hole Merger with a Total Mass of 150M⊙. Phys. Rev. Lett. 2020, 125, 101102. [Google Scholar] [CrossRef]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Agatsuma, K. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett. 2020, 896, L44. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Extended Gravity Description for the GW190814 Supermassive Neutron Star. Phys. Lett. B 2020, 811, 135910. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Capozziello, S. Charged spherically symmetric black holes in f(R) gravity and their stability analysis. Phys. Rev. 2019, 99, 104018. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Nashed, G.; Nojiri, S.; Odintsov, S. Spherically symmetric black holes with electric and magnetic charge in extended gravity: Physical properties, causal structure, and stability analysis in Einstein’s and Jordan’s frames. Eur. Phys. J. C 2020, 80, 109. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.; Hanafy, W.E.; Odintsov, S.; Oikonomou, V. Thermodynamical correspondence of f(R) gravity in Jordan and Einstein frames. arXiv 2019, arXiv:1912.03897. [Google Scholar]
- Unzicker, A.; Case, T. Translation of Einstein’s Attempt of a Unified Field Theory with Teleparallelism. arXiv 2005, arXiv:physics/0503046. [Google Scholar]
- De Andrade, V.; Guillen, L.; Pereira, J. Teleparallel gravity: An Overview. In Proceedings of the 9th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories (MG 9), Rome, Italy, 2–8 July 2000. [Google Scholar]
- Nashed, G. Charged and Non-Charged Black Hole Solutions in Mimetic Gravitational Theory. Symmetry 2018, 10, 559. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.; Vu, K. Selected topics in teleparallel gravity. Braz. J. Phys. 2004, 34, 1374–1380. [Google Scholar] [CrossRef]
- Maluf, J.W. The teleparallel equivalent of general relativity. Ann. Phys. 2013, 525, 339–357. [Google Scholar] [CrossRef]
- Shirafuji, T.; Nashed, G.G.L.; Hayashi, K. Energy of General Spherically Symmetric Solution in the Tetrad Theory of Gravitation. Prog. Theor. Phys. 1996, 95, 665–678. [Google Scholar] [CrossRef] [Green Version]
- De Andrade, V.C.; Pereira, J.G. Gravitational Lorentz force and the description of the gravitational interaction. Phys. Rev. D 1997, 56, 4689–4695. [Google Scholar] [CrossRef] [Green Version]
- El Hanafy, W.; Nashed, G.G.L. Exact teleparallel gravity of binary black holes. Astrophys. Space Sci. 2016, 361, 68. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L.; Capozziello, S. Magnetic black holes in Weitzenböck geometry. Gen. Relativ. Gravit. 2019, 51, 50. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G. Charged axially symmetric solution and energy in teleparallel theory equivalent to general relativity. Eur. Phys. J. C 2006, 49, 851–857. [Google Scholar] [CrossRef]
- Nashed, G.G.L.; Shirafuji, T. Reissner—NordströM Space—Time in The Tetrad Theory Of Gravitation. Int. J. Mod. Phys. D 2007, 16, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Ulhoa, S.C.; Da Rocha Neto, J.F.; Maluf, J.W. The Gravitational Energy Problem for Cosmological Models in Teleparallel Gravity. Int. J. Mod. Phys. D 2010, 19, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Cardone, V.F.; Farajollahi, H.; Ravanpak, A. Cosmography in f(T) gravity. Phys. Rev. D 2011, 84. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D. Introduction to Modified Gravity and Gravitational Alternative for Dark Energy. Int. J. Geom. Methods Mod. Phys. 2007, 4, 115–145. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.; Oikonomou, V. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Bengochea, G.R. Observational information for f(T) theories and Dark Torsion. Phys. Lett. B 2011, 695, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Karami, K.; Abdolmaleki, A. f(T) modified teleparallel gravity as an alternative for holographic and new agegraphic dark energy models. Res. Astron. Astrophys. 2013, 13, 757–771. [Google Scholar] [CrossRef] [Green Version]
- Dent, J.B.; Dutta, S.; Saridakis, E.N. f(T) gravity mimicking dynamical dark energy. Background and perturbation analysis. J. Cosmol. Astropart. Phys. 2011, 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Matter bounce cosmology with the f(T) gravity. Class. Quantum Gravity 2011, 28, 215011. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.M.; Capozziello, S.; Nashed, G.G.L. D-dimensional charged Anti-de-Sitter black holes in f(T) gravity. J. High Energy Phys. 2017, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. A special exact spherically symmetric solution in f(T) gravity theories. Gen. Relativ. Gravit. 2013, 45, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Shirafuji, T.; Nashed, G.G.L. Energy and momentum in the tetrad theory of gravitation. Prog. Theor. Phys. 1997, 98, 1355–1370. [Google Scholar] [CrossRef] [Green Version]
- Mai, Z.F.; Lü, H. Black holes, dark wormholes, and solitons in f(T) gravities. Phys. Rev. D 2017, 95, 124024. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, R.; Fiorini, F. Born-Infeld gravity in Weitzenböck spacetime. Phys. Rev. D 2008, 78, 124019. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, F.; Ferraro, R. A Type Of Born-Infeld Regular Gravity And Its Cosmological Consequences. Int. J. Mod. Phys. A 2009, 24, 1686–1689. [Google Scholar] [CrossRef] [Green Version]
- Cardone, V.F.; Radicella, N.; Camera, S. Accelerating f(T) gravity models constrained by recent cosmological data. Phys. Rev. D 2012, 85, 124007. [Google Scholar] [CrossRef] [Green Version]
- Myrzakulov, R. Accelerating universe from f(T) gravity. Eur. Phys. J. C 2011, 71. [Google Scholar] [CrossRef]
- Yang, R.J. New types of f(T) gravity. Eur. Phys. J. C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Bamba, K.; Odintsov, S.D.; Sáez-Gómez, D. Conformal symmetry and accelerating cosmology in teleparallel gravity. Phys. Rev. D 2013, 88, 084042. [Google Scholar] [CrossRef] [Green Version]
- Camera, S.; Cardone, V.F.; Radicella, N. Detectability of torsion gravity via galaxy clustering and cosmic shear measurements. Phys. Rev. D 2014, 89, 083520. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.L. FRW in quadratic form of f(T) gravitational theories. Gen. Relativ. Gravit. 2015, 47, 75. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.G.L. Spherically symmetric charged-dS solution in f(T) gravity theories. Phys. Rev. D 2013, 88, 104034. [Google Scholar] [CrossRef] [Green Version]
- Wang, T. Static solutions with spherical symmetry in f(T) theories. Phys. Rev. D 2011, 84, 024042. [Google Scholar] [CrossRef] [Green Version]
- Maluf, J.W. Hamiltonian formulation of the teleparallel description of general relativity. J. Math. Phys. 1994, 35, 335–343. [Google Scholar] [CrossRef]
- Arcos, H.I.; Pereira, J.G. Torsion Gravity. Int. J. Mod. Phys. D 2004, 13, 2193–2240. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 173. [Google Scholar]
- Li, B.; Sotiriou, T.P.; Barrow, J.D. f(T) gravity and local Lorentz invariance. Phys. Rev. 2011, 83, 064035. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Li, B.; Barrow, J.D. Generalizations of teleparallel gravity and local Lorentz symmetry. Phys. Rev. D 2011, 83. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Shirafuji, T. New general relativity. Phys. Rev. D 1979, 19, 3524–3553. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Leibundgut, B.R.U.N.O. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef] [Green Version]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Hook, I.M. Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.; Oikonomou, V. Unification of Inflation with Dark Energy in f(R) Gravity and Axion Dark Matter. Phys. Rev. D 2019, 99, 104070. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.; Oikonomou, V. Geometric Inflation and Dark Energy with Axion F(R) Gravity. Phys. Rev. D 2020, 101, 044009. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed-up. Phys. Rev. D 2009, 79, 124019. [Google Scholar] [CrossRef] [Green Version]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Einstein, A. On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. Math. 1939, 40, 922–936. [Google Scholar] [CrossRef]
- Awad, A.; El Hanafy, W.; Nashed, G.; Saridakis, E.N. Phase Portraits of general f(T) Cosmology. J. Cosmol. Astropart. Phys. 2018, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Nashed, G.; El Hanafy, W. A Built-in Inflation in the f(T)-Cosmology. Eur. Phys. J. C 2014, 74, 3099. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Black holes and thermodynamics. Phys. Rev. D 1976, 13, 191. [Google Scholar] [CrossRef]
- Bamba, K.; Geng, C.Q. Thermodynamics of cosmological horizons in f(T) gravity. J. Cosmol. Astropart. Phys. 2011, 1111, 008. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, R3427–R3431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, V.; Wald, R.M. Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Li, M.; Miao, R.X. A New Entropic Force Scenario and Holographic Thermodynamics. Sci. China Phys. Mech. Astron. 2011, 54, 1915–1924. [Google Scholar] [CrossRef] [Green Version]
- Miao, R.X.; Li, M.; Miao, Y.G. Violation of the first law of black hole thermodynamics in f(T) gravity. J. Cosmol. Astropart. Phys. 2011, 11, 033. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Baldovin, F.; Cerbino, R.; Pierobon, P. Introduction to Nonextensive Statistical Mechanics and Thermodynamics. arXiv 2003, arXiv:cond-mat/0309093. [Google Scholar]
- Lyra, M.L.; Tsallis, C. Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems. Phys. Rev. Lett. 1998, 80, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Tsallis, C.; Cirto, L.J. Black hole thermodynamical entropy. Eur. Phys. J. C 2013, 73, 2487. [Google Scholar] [CrossRef]
- Cai, R.G.; Kim, S.P. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J. High Energy Phys. 2005, 2, 050. [Google Scholar] [CrossRef] [Green Version]
- Lymperis, A.; Saridakis, E.N. Modified cosmology through nonextensive horizon thermodynamics. Eur. Phys. J. C 2018, 78, 993. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.J. General Relativity, Black Holes, and Cosmology. 2018. Available online: https://jila.colorado.edu/~ajsh/astr3740_17/grbook.pdf (accessed on 1 January 2021).
- Roos, M. Introduction to Cosmology; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Azmi, M.; Cleymans, J. The Tsallis Distribution at Large Transverse Momenta. Eur. Phys. J. C 2015, 75, 430. [Google Scholar] [CrossRef] [Green Version]
- Cleymans, J.; Lykasov, G.; Parvan, A.; Sorin, A.; Teryaev, O.; Worku, D. Systematic properties of the Tsallis distribution: Energy dependence of parameters in high energy p–p collisions. Phys. Lett. B 2013, 723, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Battye, R. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, 641, A6. [Google Scholar]
- Ade, P.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Battaner, E. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Rubin, D.; Lidman, C.; Aldering, G.; Amanullah, R.; Barbary, K.; Barrientos, L.F.; Botyanszki, J.; Brodwin, M.; Connolly, N.; et al. The Hubble Space Telescope Cluster Supernova Survey. V. Improving the Dark-energy Constraints above z > 1 and Building an Early-type-hosted Supernova Sample. Astrophys. J. 2012, 746, 85. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M.S.; Conley, A.; Dawson, K.S.; Deustua, S.E.; et al. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation. Astrophys. J. 2010, 716, 712–738. [Google Scholar] [CrossRef] [Green Version]
- Astier, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 2006, 447, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Scolnic, D.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Rodney, S. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Riess, A.G.; Strolger, L.G.; Casertano, S.; Ferguson, H.C.; Mobasher, B.; Gold, B.; Challis, P.J.; Filippenko, A.V.; Jha, S.; Li, W.; et al. New Hubble space telescope discoveries of type Ia supernovae at z ≥ 1: Narrowing constraints on the early behavior of dark energy. Astrophys. J. 2007, 659, 98. [Google Scholar] [CrossRef] [Green Version]
- Nesseris, S.; Basilakos, S.; Saridakis, E.; Perivolaropoulos, L. Viable f(T) models are practically indistinguishable from ΛCDM. Phys. Rev. D 2013, 88, 103010. [Google Scholar] [CrossRef] [Green Version]
- Nunes, R.C.; Pan, S.; Saridakis, E.N. New observational constraints on f(T) gravity from cosmic chronometers. J. Cosmol. Astropart. Phys. 2016, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Basilakos, S.; Nesseris, S.; Anagnostopoulos, F.; Saridakis, E. Updated constraints on f(T) models using direct and indirect measurements of the Hubble parameter. J. Cosmol. Astropart. Phys. 2018, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Nashed, G.G.L.; El Hanafy, W.; Ibraheem, S.K. Bounce inflation in f(T) Cosmology: A unified inflaton-quintessence field. Phys. Rev. 2016, 94, 083513. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalaby, A.G.; Oikonomou, V.K.; Nashed, G.G.L. Non-Extensive Thermodynamics Effects in the Cosmology of f(T) Gravity. Symmetry 2021, 13, 75. https://doi.org/10.3390/sym13010075
Shalaby AG, Oikonomou VK, Nashed GGL. Non-Extensive Thermodynamics Effects in the Cosmology of f(T) Gravity. Symmetry. 2021; 13(1):75. https://doi.org/10.3390/sym13010075
Chicago/Turabian StyleShalaby, Asmaa G., Vasilis K. Oikonomou, and Gamal G. L. Nashed. 2021. "Non-Extensive Thermodynamics Effects in the Cosmology of f(T) Gravity" Symmetry 13, no. 1: 75. https://doi.org/10.3390/sym13010075