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Abstract: In this study, we derive, in the framework of mimetic theory, charged and non-charged black
hole solutions for spherically symmetric as well as flat horizon spacetimes. The asymptotic behavior
of those black holes behave as flat or (A)dS spacetimes and coincide with the solutions derived
before in general relativity theory. Using the field equations of non-linear electrodynamics mimetic
theory we derive new black hole solutions with monopole and quadrupole terms. The quadruple
term of those black holes is related by a constant so that its vanishing makes the solutions coincide
with the linear Maxwell black holes. We study the singularities of those solutions and show that
they possess stronger singularity than the ones known in general relativity. Among many things,
we study the horizons as well as the heat capacity to see if the black holes derived in this study have
thermodynamical stability or not.
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1. Introduction

General Relativity (GR) is believed to be an interesting theory which permits the construction
of black holes [1–3]. Regarding this fact, the field equations of GR, which are non-linear, can be
solved exactly by postulating a specific symmetry on the geometry of the spacetime. For instant,
assuming the space to be spherically symmetric then one can obtain the Schwarzschild spacetime
as an analytic vacuum solution to Einstein theory of GR. Moreover, and from our experience of
astrophysics, we realize that at the final stage of the development of a stellar object with sufficiently
large mass, nothing can stop it from falling and finally one gets a black hole [4,5].

It is well known that Einstein’s GR foretells the existence of singularities which are responsible
for the formation of black holes [6]. At the singularity, the invariants formulated from the curvature,
Kretschmann, Ricci tensors square and the Ricci scalars, diverge and the curvature of the spacetime
and geodesics become incomplete. From the philosophy of GR, a falling body takes a finite time to
pass into the event horizon and after that, the body continues in falling until it reaches the singularity.
From our knowledge of GR, this body would be smashed before reaching the singularity due to the
huge forces act on it [3].

One of the defects that makes the theory incomplete is the occurrence of singularities. It is well
known that GR is a classical theory, thus, it is expected that quantum effects or viable quantum theory
of gravity are necessary near singularities. Therefore, those singularities could be improved if we take
into consideration the quantum gravity effects. Despite this, up to this moment, no viable quantum
gravity theory formulated [7].
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There are may trials to resolve the problem of singularity in GR. Among these trails f (R)
gravity [8–20] and the torsion-based f (T) gravity [21–26]. In this study, we use another trial which is
the conformal invariant gravitational theories [27–35]. It is well known that Einstein’s GR is invariant
under general diffeomorphisms however, it is not invariant under the conformal transformation.
Mimetic gravity theories are presented to solve the problems of singularity as well as to supply other
alternative description of dark matter theories [36]. There are many amendments of the original
mimetic gravity formulated in the literature [37]. The mimetic gravity theory which depends on
a Proca-like vector field has been used to discuss the caustic instabilities [38]. One more variant is
the “tensor-vector-scalar theory”, that has been constructed to discuss the ghost instabilities [39].
Other modified theory which take into account the potential of the mimetic scalar field [40,41] has been
presented to discuss the cosmological evolutions. Moreover, the effect of the quantum corrections can
be considered if one takes into account the higher-order curvature invariants to the action of mimetic
gravitation theory, like mimetic f (R) gravity [42,43]. Many modified mimetic theories have been
constructed to taking into consideration the quantum corrections, like mimetic f (G) [44], mimetic
f (R, T) [45], mimetic covariant Horava-like gravity [46], mimetic f (R, φ) [47], mimetic Galileon
gravity [48,49], mimetic Horndeski gravity [50], unimodular-mimetic f (R) gravity [51], mimetic
Born-Infeld gravity [52] and non-local mimetic f (R) gravity [53]. The motivation and importance of
the higher-derivative invariants of the Lagrangian of the mimetic theory have been discussed [54–60].
Other modifications of the mimetic theory have been constructed, for example by involving the
vector-tensor mimetic gravity [61], bi-scalar mimetic models [62], the one that considers the limiting
curvature hypothesis to solve the problems of the cosmological singularity [63,64] and the braneworld
mimetic gravity [65]. Moreover, the theories in which the mimetic field is non-minimally coupled
with matter [66]. The effective theory of cosmological perturbations, in mimetic theories, has been
developed to overcome the problem of gradient instability [56]. Curiously, the mimetic f (R) theory
suffers from ghosts [67] and despite this, it has been shown that such problem could be overcome by
using an appropriate gravitational Lagrangian multiplier [67]. The latest developments in mimetic
gravitational theory in addition to other modified theories are displayed in [68].

The non-linear effect of the magnetic dipole and quadrupole fields on the propagation
of electromagnetic waves in the eikonal approximation of the parameterized post-Maxwell
electrodynamics of the vacuum is calculated [69]. The regular multi-horizon black holes in the
Einstein gravity, f (R) gravity coupled with non-linear electrodynamics have been investigated [70].
In non-linear electrodynamics coupled to gravity, regular spherically symmetric electrically charged
solutions satisfy the weak energy condition and have obligatory de Sitter center have been investigated
in [71]. Later, many different regular black hole solutions in the non-linear electrodynamics have been
derived [72–82].

The constructions of this study are as follows: In Section 2, a fundamental process of the mimetic
gravitational theory is presented. In Section 3, non-charged and charged spherically symmetric black
holes are derived in the frame of linear Maxwell case. In Section 4, non-charged and charged cylindrical
horizon black holes are also presented in the frame of linear Maxwell electrodynamics. In Section 5,
we study the singularities of those black holes derived in Sections 3 and 4. In Section 6, we apply the
field equations of the non-linear electrodynamic mimetic theory to the spherically symmetric and flat
horizon spacetimes, presented in Sections 3 and 4, and derived new black holes include monopole
as well as quadrupole terms. In Section 7, the features of the non-linear electrodynamics black hole
solutions are studied. In Section 8, we study the thermodynamical properties of the black holes derived
in Sections 3, 4 and 6. In the final section, we discuss the main results.
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2. Preliminaries of Mimetic Gravitational Theory

The mimetic gravity was constructed in GR to discuss the dark matter in cosmology [83].
The formulation of the mimetic theory of the physical metric gµν is defined as [83]:

gαβ = −ḡαβ(ḡµβ∂µψ∂νψ), (1)

with ḡαβ being the conformal auxiliary metric, ψ is the mimetic scalar field and ḡαβ is the inverse
of ḡαβ. From Equation (1) one can show that GR theory is invariant under the transformation, i.e.,
ḡαβ → ω(xµ)ḡαβ where ω(xµ) is an arbitrary function of the coordinates. Equation (1) shows that the
mimetic field should satisfy:

gµν∂µψ ∂νψ = −1. (2)

Considering the mimetic Maxwell theory which includes the cosmological constant Λ in the form

S :=
1

2χ

∫
d4x
√
−g(ḡµν, ψ)

{
R(ḡµν, ψ)−Λ− SM.F.

}
, (3)

with χ being the 4-dimensional gravitational constant, χ = 8π and g ≡ g(ḡµν, ψ) is the determinant
of the physical metric given by Equation (1). The Maxwell filed action is defined as [84,85]
SM.F. = F ∧? F, where F = dV, and V = Vµdxµ, being the gauge potential 1-form.

Varying the action (3) with respect to the physical metric we get the gravitational field equation in
the form

Iµ
ν = Gµ

ν +
1
2

δν
µΛ−

em
T µ

ν − T̃µ
ν ≡ 0 (4)

where Gµν is the Einstein tensor with G = −R is its trace and the energy momentum-tensor of Maxwell

field
em
T µ

ν, is given by
em
T µ

ν = FµαFνα − 1
4

δν
µFαβFαβ, (5)

which has a vanishing trace. Remarkably, the auxiliary metric does not appear in the field equations,
however it implicitly does through the physical metric of Equation (2) and the mimetic field ψ.
The presence of the mimetic field can be written as

T̃µν = −(G + 2Λ)∂µψ ∂νψ. (6)

Finally, the variation of the action (3) with respect to the 1-form gauge potential gives [84]

∂ν

(√
−gFµν

)
= 0. (7)

It is worth mentioning that the energy-momentum tensors,
em
T µν and T̃µν , are conserved,

i.e., they satisfy the continuity equations ∇µ
em
T µν = 0 = ∇µT̃µν, where ∇ is the covariant derivative

with respect to the symmetric affine connection. Using the mimetic field condition given by Equation (2)
and the energy-momentum tensor (6), the corresponding continuity gives

∇ν([G + 2Λ]∂νψ) =
1√−g

∂ν

(√
−g[G + 2Λ]gνσ∂σψ

)
= 0. (8)

On the other hand, one can show that Equation (2) is satisfied when Equation (8) is used. It is
simple to show that the trace of Equation (4) has the form

[G + 2Λ](1 + gµν∂µψ∂νψ) = 0. (9)
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Finally, one can note that the conformal degree of freedom provides a dynamical quantity,
i.e., (G 6= 0), and thence the mimetic theory has non-trivial solutions [83]. For many physical
applications of the mimetic gravity, we refer to [51,86,87] and references therein.

3. Spherically Symmetric Black Holes in Mimetic Gravity

Using the following spherically symmetric spacetime

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdφ2), (10)

with f (r) being an unknown function of r we get the Ricci scalar in the form

R = − r2 f ′′ + 4r f ′ + 2 f − 2
r2 . (11)

Applying the field Equation (4) when
em
T µ

ν = 0 to the metric (10) we get:

It
t =

r f ′ − 1 + f
r2 ≡ 0,

Ir
r =

r f ′ − 1 + f − 2ψ′2[2r f f ′ − f + f 2]− f r2ψ′2 f ′′

r2 ≡ 0, (12)

Iθ
θ = Iφ

φ =
2 f ′ + r f ′′

2r
≡ 0,

where f ′ = d f (r)
dr , f ′′ = d2 f (r)

dr2 and ψ′ = dψ(r)
dr . Equation (12) shows clearly that one cannot control the

value of the mimetic field, therefore we are going to assume certain value of it (This result i.e., the field
equations of the mimetic theory are not able to fix the mimetic field, is valid through the whole of the
present study). The exact solution of the differential Equation (12) takes the form

f (r) := 1 +
c
r

, ψ(r) :=
c1

r
. (13)

Using Equation (13) in (10) we get the metric spacetime in the form

ds2 = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), where c = −2m. (14)

Equation (14) indicates that the metric behaves asymptotically as a flat spacetime and has an
event horizon at r = 2m. Equation (13) is an exact solution to the field Equation (4) in addition to
Equation (9) since the Ricci scalar of this solution has a nil value.

Now, we are going to use the following metric

ds2 = − f (r)dt2 +
1

f1(r)
dr2 + r2(dθ2 + sin2 θdφ2), (15)

where f (r) and f1(r) are two unknown functions of the radial coordinate r to calculate the Ricci scalar
and get

R = −
r2 f f ′ f ′1 + 2r2 f f1 f ′′ − r2 f ′2 f1 + 4r f f1 f ′1 + 4 f 2r f ′1 − 4 f 2 + 4 f 2 f1

2r2 f 2 . (16)

Equation (16) coincides with (11) when the unknown functions f (r) = f1(r). Using the metric (15)

into (4) when
em
T µ

ν = 0 we get:
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It
t ≡

2r f ′1−2+2 f1+r2Λ
2r2 = 0,

Ir
r ≡

2r f f1 f ′− f 2(2−2 f1+r2Λ)−4 f f1ψ′2[r( f f1)
′+ f f1− f+r2 f Λ]− f1r2ψ′2[ f f ′1 f ′+2 f f1 f ′′− f1 f ′2]
2r2 f 2 = 0,

Iθ
θ ≡ Iφ

φ =
2 f ( f f1)

′+r[ f f ′ f ′1+2 f f1 f ′′− f1 f ′2]+2r2Λ
4r f 2 = 0.

(17)

The exact solution of the differential Equation (17) has the form

f (r) = f 1(r) := 1− r2Λ
6 + c

r , ψ(r) := ±
[
b1(r) + c ln

√
r− c/2 + b1(r)

]
, with b1(r) =

√
r2 − cr. (18)

Equation (18) coincides with (13) when the cosmological constant vanishing. To write the metric
spacetime of Equation (18) we use Equation (15) and get

ds2 = −
{

1− r2Λ
6
− 2m

r

}
dt2 +

(
1− r2Λ

6
− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (19)

Equation (19) shows that the metric behaves asymptotically as (A)dS spacetime.
Now we are going to study the effect of the electromagnetic field on the mimetic theory, i.e., when

em
T µ

ν 6= 0. Applying the field Equation (4) to the metric (10) we get:
f (r) = f 1(r) := 1− r2Λ

6 + c
r , ψ(r) := ±

[
b1(r) + c ln

√
r− c/2 + b1(r)

]
, with b1(r) =

√
r2 − cr.

It
t =

2r f ′−2+2 f+r2q′2

2r2 ≡ 0,

Ir
r =

2r f ′−2(1− f )−4ψ′2[2r f f ′− f+ f 2]−2 f r2ψ′2 f ′′+r2q′2

2r2 ≡ 0,

Iθ
θ = Iφ

φ = 2 f ′+r f ′′−rq′2
2r ≡ 0,

(20)

where the unknown function q(r) is given from the vector potential which has the form

V := q(r)dt. (21)

Equation (20) reduces to Equation (12) when q(r) = 0. The exact solution of the differential
Equation (20) takes the form

f (r) := 1 +
c
r
+

c2
2

2r2 , ψ(r) :=
c1

r
, q(r) :=

c2

r
. (22)

Equation (22) reduces to (13) when c2 = 0.
Using Equation (22) in (10) we get the metric spacetime in the form

ds2 = −
(

1− 2m
r

+
q2

r2

)
dt2 +

(
1− 2m

r
+

q2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), where c2 =
√

2q. (23)

Equation (23) indicates that the metric behaves asymptotically as a flat spacetime and coincides
with Reissner-Nordström which has an event horizon at r = m±

√
4m2 − 2q2 [88–90].

Now we are going to apply the field Equation (4) to the metric (15) when
em
T µ

ν 6= 0 and get:

It
t =

2r f f ′1 − 2 f + 2 f f1 + r2 f1q′2

2r2 f
≡ 0,

Ir
r =

1
2r2 f 2

(
f [2r f1 f ′ − 2 f (1− f1) + r2 f1q′2]− 4 f f1ψ′2[r( f f1)

′ + f f1 − f ]− r2 f1ψ′2[ f f ′1 f ′ + 2 f f1 f ′′ − f1 f ′2]
)
≡ 0,

Iθ
θ = Iφ

φ =
2 f ( f f1)

′ + r[ f f ′ f ′1 + 2 f f1 f ′′ − f1 f ′2]− 2r f f1q′2

4r f 2 ≡ 0.

(24)
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The physical solution (Physical solution is the one that has a well behave asymptote at infinity,
i.e., when r → ∞ the solution has well asymptote.) of the differential Equation (24) has the same form
given by (22).

4. Cylindrical Black Holes in Mimetic Gravity

Now, we are going to study the cylindrical spacetime. For this purpose we suppose the spacetime
configuration to have the form

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + dz2), (25)

where 0 ≤ r < ∞, −∞ < t < ∞, 0 ≤ θ < 2π and −∞ < z < ∞. For the spacetime (25), the Ricci scalar
takes the form

R = − r2 f ′′ + 4r f ′ + 2 f
r2 . (26)

Then, the non-vanishing components of Equations (4) and (7) are:

It
t =

2r f ′ + 2 f + Λr2 + q′2r2

2r2 ≡ 0,

Ir
r =

2r f ′ + 2 f + Λr2 − 2ψ′2 f [4 f ′r + 2 f + 2 f ′′r2 + Λr2] + q′2r2

2r2 ≡ 0,

Iθ
θ = Ez

z =
2 f ′ + r f ′′ + Λr− rq′2

2r
≡ 0.

(27)

We solve the field Equation (27) and get

q(r) = c2
r , f (r) = c

r −
Λr2

6 + c1
2

2r2 , ψ(r) =
[√

r2 − c3r + c3 ln
√

r− c3/2 +
√

r2 − c3r
]

, (28)

where c3 is constant. It is worth mentioning that Equation (28) is an exact solution of Maxwell-mimetic
gravitational theory given by Equations (4) and (7). Plugging solution (28) into the spacetime
metric (25), we get

ds2 = −
(
−Λr2

6 −
2m
r + q2

r2

)
dt2 +

(
−Λr2

6 −
2m
r + q2

r2

)−1
dr2 + r2(dθ2 + dz2), where c = −2m , c2 =

√
2q. (29)

As is clear the spacetime (29) is asymptotically (A)dS and coincides with Reissner-Nordström
(A)dS. If we repeat our calculations using the following metric

ds2 = − f (r)dt2 +
1

f1(r)
dr2 + r2(dθ2 + dz2), (30)

the solution of the resulting differential equation will be the same as that given by (28) in which
f (r) = f1(r).

5. Features of the Black Hole Solutions

In this section, we are going to discuss the physical features of solutions (18), (22) and (28) derived
in the previous sections. To achieve this we are going to study their singularities.

Singularities of the black holes:
To derive the physical singularities one must calculate the invariants of curvature. Calculating all

the invariants of curvature of solutions (18), (22) and (28) we get



Symmetry 2018, 10, 559 7 of 21

solution (18) RµνλρRµνλρ = 2(Λ2r2+72m2)
3r6 , RµνRµν = Λ2, R = 2Λ,

solution (22) RµνλρRµνλρ =
48m2r2−96rmq2+56q4

r8 , RµνRµν =
4q4

r8 , R = 0,

solution (28) RµνλρRµνλρ =
2(Λ2r8+168q2−144

√
2rmq+72m2r2)

3r8 , RµνRµν =
Λ2r8+8q4

r8 , R = 2Λ,

(31)

where RµνλρRµνλρ, RµνRµν, R are the Kretschmann scalar, the Ricci tensor square and the Ricci scalar.
Equation (31) shows that:

(i) There is a singularity at r = 0 which is a true singularity for all the derived solutions.
(ii) The Ricci scalar has a vanishing value for solutions (22) and constant value for solutions (18) and

(28). As is clear from our previous discussion that all the non-charged and charged solutions in
the frame of mimetic theory have no shift from GR. Therefore, in the next section, we are going
to study the effect of the non-linear electrodynamics of the mimetic gravitational theory on the
previous two spacetimes given by Equations (10) and (25).

6. New Black Holes with Non-Linear Electrodynamics in Mimetic Gravity

In this section, we consider the mimetic theory with non-linear electrodynamics in the presence of
a cosmological constant.

Therefore, we take the following action

LNL :=
1

2χ

∫
d4x
√
−g(ḡµν, ψ)

[
R(ḡµν, ψ)−Λ−L(F )

]
, (32)

where L(F ) is a gauge-invariant electromagnetic Lagrangian that depends on a single invariant F
defined as F = 1

4 FαβFαβ [91].
The electromagnetic field F is the antisymmetric Faraday tensor

Fαβ = Eα,β − Eβ,α,

where Eµ is its gauge potential 1-form. The Lagrangian L(F ) in the Maxwell theory has the form
L(F ) = 4F.

In this study, we will be considering more general choices of the electromagnetic Lagrangians.
As Equation (32) informs us that the nonlinear electrodynamics is described by terms of a nonlinear
electrodynamic field, Fαβ, and its invariants. However, we can provide a dual representation in terms
of an auxiliary field Pαβ . This method is proved to be highly benefit to derive an exact solution in GR,
specifically for the electric case [92,93]. The dual formalism can be obtained by using the following
Legendre transformation:

H = 2FLF −L, where LF =
∂L
∂F

, (33)

withH being an arbitrary function which depends on the invariant P that is defined as P = 1
4 PαβPαβ.

Using Equation (33) then the theory of the non-linear electrodynamics can be recast in terms of P
formalism by using the following relations

Pµν = LFFµν, Fµν = HPPµν, L = 2PHP −H, (34)

where the linear Maxwell field can be obtained by setting LF = 1. As is clear from the above equations
thatH is a function of P,
where [92,93]

HP =
∂H
∂P

.
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Varying the action of Equation (32) with respect to the physical metric, one can write the
gravitational field equations as

Iµ
ν = Gµ

ν +
1
2

δν
µΛ−

NL

T − T̃µ
ν ≡ 0, (35)

and the Maxwell field equations of the nonlinear electrodynamics take the form [93]

∂ν

(√
−gPµν

)
= 0. (36)

The energy-momentum tensor of the electrodynamic is defined as,

NL

Tµ
ν := 2(HPPµαPνα − δν

µ[2PHP −H]). (37)

It is important to mention that Equation (37) has a non-vanishing value of the trace. In addition,
the mimetic field contributes in the field equations as

T̃µν = −(G + 2Λ−
NL

T)∂µψ ∂νψ. (38)

Similar to the linear electrodynamics case, the energy-momentum tensors,
NL

Tµν and T̃µν are

conserved, i.e., ∇µ
NL

Tµν = 0 = ∇µT̃µν. Using Equations (2) and (38), we write the continuity equation
of the mimetic field

∇ν([G + 2Λ−
NL

T]∂νψ) ≡ 1√−g
∂ν

(√
−g[G + 2Λ−

NL

T]gνσ∂σψ
)
= 0. (39)

It is useful to give the trace of Equation (35) which has the form

(G + 2Λ−
NL

T)(1 + gµν∂µψ∂νψ) = 0. (40)

As is clear, Equation (40) is satisfied identically, if Equation (2) is used. Since G 6= 0 or
NL

T 6= 0, the
mimetic theory at hand has non-trivial solutions and the conformal degree of freedom, remarkably,
provides a dynamical quantity [83].

Now, we are going to apply the field Equations (35) and (36) to the spacetime metric (10) and get
the following non-vanishing components:

It
t = r f ′−2+ f−r2H

r2 ≡ 0,

Ir
r = 1

φ′2r2

{
[r f ′ − 1 + f − r2H− r2 f ψ′2 f ′′ + 2 f ψ′2{2r2H+ 1− f − r f ′}]φ′′ − 2r2 f φ′ψ′2H′

}
≡ 0,

Iθ
θ = Iφ

φ = 1
2rφ′′

{
2φ′′ f ′ + r f ′′φ′′ + 2rφ′H′ − 2rφ′′H

}
≡ 0.

(41)

In Equation (41), H(r) is the arbitrary function that represents the effect of the non-linear
electrodynamics and φ(r) (Please note that in the non-linear electrodynamics case the electromagnetic
field is defined as Pµν = Aµ,ν − Aν,µ where A is the gauge potential which in this study has the form
Aµ = φ(r)dt) is an unknown function reproducing the electric charge of the of the electromagnetic
field Pµν.

It is straightforward to show that the above system reduces to Equation (27) by settingH(r) =
−φ′2/2. The above system of differential equation has the following solution:

H(r) = c6
r4 − c7

2

r6 , ψ(r) = c1
r , φ(r) = c8

r , f (r) = 3r4+3c9r3−3c6r2+c7
2

3r4 , (42)
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where ci, i = 6 · · · 9 are constants. From the above solution, we can conclude that the non-linear
electrodynamics consists of monopole and quadruple terms. Interestingly, the constant associated with
the monopole is different from that appears in the quadrupole term. In this sense, one can get the form
of the linear electrodynamics by setting the constant c7 = 0. This can be seen from the calculation of
the electric field

E = Ftr = HpPtr. (43)

Using Equation (48) in Equation (43) one can get the electric field in the form

E =
4c6

c1r
− 2c7

2

c1r3 , (44)

from which one can see that if the constant of the non linearity vanishing, i.e., c7 = 0 we get the usual
linear Maxwell field after some re-parametrization.

It is of interest to note that Equation (42) satisfies Equation (40). Moreover, it is worth mentioning
that Equation (42) is an exact solution of the non-linear Maxwell-mimetic gravitational theory that is
given by Equations (35) and (36). The line element corresponding to solution (42) has the form:

ds2 = −
{

3r4+3c9r3−3c6r2+c7
2

3r4

}
dt2 +

{
3r4

3r4+3c9r3−3c6r2+c7
2

}
dr2 + r2 (dθ2 + sin2 θdφ2) . (45)

One can easily recognize that the spacetime (45) is asymptotically flat spacetime.
Now, we are going to apply the field Equations (35) and (36) to the spacetime metric (15) and the

following non-vanishing components are obtained

It
t ≡

r f ′1 − 1 + f1 − r2H
r2 = 0,

Ir
r ≡ 1

2r2 f 2( f φ′ f ′1− f1 f ′φ′+2φ′′ f f1)

{
2r f1 f ′ f ′1φ′ + 4r f1

2 f ′φ′′ − 2 f ′1φ′ − 4 f1φ′′ + 2 f f1 f ′1φ′ + 4 f f1
2φ′′ − 4ψ′2r f f1

2
[
2 f ′ f ′1φ′

+4 f1 f ′φ′′ + f ′1
2φ′ + 2 f f ′1φ′′

]
+ 4ψ′2 f f1

[
f ′1φ′ + 2 f1φ′′ − f f1 f ′1φ′ − 2r f f1 f ′1φ′′ + f ′1φ′ + 2 f f1φ′′ − f f1 f ′1φ′ − 2 f f1

2φ′′
]

−ψ′2r2 f f1[ f1
2 f ′2φ′′ + 2 f f1 f ′ f ′1φ′′ + 2 f1 f ′1 f ′′φ′ + 4 f1

2 f ′′φ′′] + 8ψ′2r2 f f1[rH f ′1φ′ + 2r f1Hφ′′ − r f1φ′H′]− 2r2H f ′1φ′

−4r2 f1Hφ′′
}

= 0,

Iθ
θ ≡ Iφ

φ =
1

2r2 f 2( f φ′ f ′1 − f1 f ′φ′ + 2φ′′ f f1)

{
4 f 2 f1 f ′ f ′1φ′ + 8 f1

2 f ′φ′′ + 2 f f1
2 f ′2φ′′ + 4 f f1 f ′1φ′′ + r f ′ f ′1

2φ′ + 2 f1 f ′ f ′1φ′′

+2r f1 f ′1 f ′′φ′ + 4r f1
2 f ′′φ′′ + 8r f1φ′H′ − 4rH f ′1φ′ − 8r f1Hφ′′

}
= 0.

(46)

It is straightforward to show that the above system reduces to (24) by settingH(r) = −φ′2 f1/2 f .
The solution of Equation (46) has the same form given by Equation (42) in which f (r) = f1(r).

Now we are going to apply the field Equations (35) and (36) to the spacetime metric (25) and get
the non-vanishing components:

It
t ≡ 2r f ′ + 2 f + r2Λ− 2r2H

2r2 = 0,

Ir
r ≡ 1

2φ′2r2

{
[2r f ′ + 2 f + r2Λ− 2r2H− 2r2 f ψ′2 f ′′ + 4 f ψ′2{2r2H− f − 2r f ′ − r2Λ}]φ′′ − 4r2 f φ′ψ′2H′

}
= 0,

Iθ
θ = Iφ

φ =
1

2rφ′′

{
2φ′′ f ′ + r f ′′φ′′ + 2rφ′H′ − 2rφ′′H+ rφ′′Λ

}
= 0.

(47)

It is straightforward to show that the above system reduces to Equation (27) by settingH(r) =
−φ′2/2. Equation (47) has the following solution:
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H(r) = c6
r4 − c7

2

r6 , ψ(r) = c1
r , φ(r) = c8

r , f (r) = 6c9r3−6c6r2−Λr6+2c7
2

6r4 , (48)

where c6 and c7 are constants. From the above solutions, we can conclude that the non-linear
electrodynamics consists also of monopole, and quadrupole terms. Interestingly, the constant
associated with the monopole is different from that appears in the quadrupole terms. In this sense, one
can get the form of the linear electrodynamics by setting the constant c7 = 0. The form of the Maxwell
field in this case is given by Equation (44).

On the other hand, the mimetic field ψ(r) is not constant in this case. It is of interest to note
that Equation (48) is an exact solution to the non-linear Maxwell-mimetic gravitational theory that
is given by Equations (35) and (36) as well as to the trace given by Equation (40). The line element
corresponding to the solution (48) is given by

ds2 = −
{

6c9r3−6c6r2−Λr6+2c7
2

6r4

}
dt2 +

{
6r4

6c9r3−6c6r2−Λr6+2c7
2

}
dr2 + r2 (dθ2 + dz2) , (49)

which behaves asymptotically as (A)dS spacetime.
Now we are going to apply the field Equations (35) and (36) to the spacetime metric (30) and get

the following non-vanishing components

It
t ≡ 2r f ′1−1+2 f1+r2Λ−2r2H

r2 = 0,

Ir
r ≡ 1

2r2 f 2( f φ′ f ′1 − f1 f ′φ′ + 2φ′′ f f1)

{
8r2 f1

2 f 3H′φ′ψ′2 − 2r f 2 f1 f ′ f ′1φ′ + 4r f 3 f1ψ′2 f ′1
2φ′ − 4r f f1

3ψ′2 f ′2φ′ + 8r f 2 f1
3ψ′2 f ′φ′′

+4r2 f 2 f1
3ψ′2 f ′′φ′′ − 2r2 f f1

3ψ′2 f ′φ′′ + 8ψ′2r2 f1
2 f 3Λφ′′ − 16ψ′2r2 f1

2 f 3Hφ′′ + 8ψ′2r f1
2 f 3 f ′1φ′′ − 4r f1

2 f 2 f ′φ′′

+4ψ′2 f1
2 f 3 f ′1φ′ − 4ψ′2 f1

3 f 2 f ′φ′ + r2 f1
3 f ′3φ′ψ′2 + 8ψ′2 f1

3 f 3φ′′ + 4r2 f 3 f1Hφ′′ − 2r2 f 3 f1Λφ′′ + ψ′2r2 f1 f 2 f ′ f ′1φ′

−2ψ′2r2 f1
2 f f ′2 f ′1φ′ + 4ψ′2r2 f1 f 3Λ f ′1φ′ − 4ψ′2r2 f1

2 f 2Λ f ′φ′ − 8ψ′2r2 f1 f 3H f ′1φ′ + 8ψ′2r2 f 2 f1
2H f ′φ′

+2ψ′2r2 f 2 f1
2 f ′ f ′1φ′′ + 2ψ′2r2 f 2 f1

2 f ′′ f ′1φ′ − 2ψ′2r2 f1
3 f f ′′ f ′φ′ − 4 f 3 f1

2ξ ′′ + r2Λ f 2 f1 f ′φ′ − 2r2 f 2 f1H f ′φ′ + 2r2 f 3H f ′1φ′

−r2Λ f 3 f ′1φ′ + 2r f f1
2 f ′2φ′ − 2 f 3 f1 f ′1φ′ + 2 f 2 f1

2 f ′φ′
}

= 0,

Iθ
θ ≡ Iφ

φ =
1

2r f 2( f1φ′ f ′ − f ′1 f φ′ − 2φ′′ f f1)

{
2 f f1

2 f ′2φ′ − 4 f 2 f1
2 f ′φ′′ − 2 f 3 f ′1

2φ′ − 4 f 3 f1 f ′1φ′′ − r f 2 f ′ f1
2φ′ + 2r f f1 f ′2 f ′1φ′

−2r f 2 f1 f ′ f ′1φ′′ − 2r f 2 f1 f ′′ f ′1φ′ + 2r f1
2 f f ′′ f ′φ′ − 4r f 2 f1

2 f ′′φ′′ − r f1
2 f ′3φ′ + 2r f1

2 f ′2φ′′ − 2r f 3Λ f ′1φ′ + 2r f 2 f1 f ′φ′

−4r f 3 f1Λφ′′ − 8r f 3 f1H′ + 4r f 3H f ′1φ′ − 4r f 2 f1H f ′φ′ + 8r f 3 f1Hφ′′
}

= 0.

(50)

The solution of the system of differential Equation (50) coincides with (48) in which f (r) = f1(r).

7. Features of the Non-Linear Electrodynamics Black Hole Solutions

Now we are going to discuss some relevant features of the charged black hole solutions presented
in the previous section of the non-linear case.

Firstly, for the spherically symmetric spacetime the metric of solution (42) takes the form

ds2 = −
{

r4−2mr3+q2r2+q1
2

r4

}
dt2 +

{
r4

r4−2mr3+q2r2+q1
2

}
dr2 + r2 (dθ2 + sin2 θdφ2) . (51)

where we have put c6 = −q2, c7 =
√

3q1 and c9 = −2m. Equation (51) shows clearly that the
metric besides the Reissner-Nordström term, which represented by the monopole which proportional
to O

(
1
r2

)
, there is another term which is the quadruple term that is proportional to O

(
1
r4

)
. It is

important to note that Equation (51) is asymptotically behaves as a flat spacetime. By taking the limit
q→ 0 and q1 → 0 we get the Schwarzschild black hole and when q1 → 0 we get Reissner-Nordström
spacetime. The horizons of the metric (51) are given by the real positive roots of Γ(r) = 0, where
Γ(r) = r4 − 2mr3 + qr2 − q1

2, see [94]. For the model at hand, namely the spacetime metric (51), taking
x = r2, we find that the constraint Γ(x) = 0 gives two positive real roots.
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Secondly, in the flat horizon case, the spacetime metric of the black hole solution (48), takes
the form

ds2 = −
{

6q2r2−12mr3−Λr6+6q1
2

6r4

}
dt2 +

{
6r4

6q2r2−12mr3−Λr6+6q1
2

}
dr2 + r2 (dθ2 + dz2) . (52)

where we have put c9 = −2m, c6 = −q2 and c7 =
√

3q1 . Equation (52) indicates that the metric
of the charged black hole in the non-linear Maxwell case is different from Reissner-Nordström black
hole. This difference is due to the existence of the quadruple term which is related to the constant
q1. When q1 = 0, Equation (52) reduces to Reissner-Nordström case. It is of interest to note that the
quadruple charged terms that appear in Equations (51) and (52) are reproduced from the arbitrary
function, H(r), which characterizes the non-linear electrodynamics. By taking the limit q1 → 0,
the solution goes to the (A)dS charged black hole of the linear case. Additionally by taking x = r3,
similar to the spherically symmetric case, we find that the constraint Γ(x) = 0 has three positive
real roots.

Next, we discuss some physical properties of the solutions (42) and (48) by investigating the
singularity behaviors and their stabilities.

7.1. Visualization of Black Holes Singularities

We investigate the physical singularities by calculating some of the curvature invariants in the
non-linear electrodynamics, see (42) and (48). For those solutions we evaluate the scalar invariants
and get

solution (42) RµνλρRµνλρ = 96q2r5m−312r2q2q1
2−240mr3q1+48m2r6+56q4r4+468q1

2

r12 ,

RµνRµν = 4r4q4−36r2q2q1+90q1
2

r12 , R = − 6q1
r6 ,

solution (48) RµνλρRµνλρ = 2(72m2r6+84r4q4+r2Λ2−468r2q2q1+144r5mq2−360r3mq1−6r6q1Λ+702q1
2)

r12 ,

RµνRµν = 4r4q4+Λ2r12−36r2q2q1
2−6r6q1Λ+90q1

2

r12 , R = 2(Λr6−3q1)
r6 .

(53)

As is clear that all invariants have true singularities at r = 0. Remarkably, at the limit r → 0,
the behaviours of the Kretschmann scalars, the Ricci tensor square and the Ricci scalars of the non-linear
charged black hole solutions are given as K = RµνRµν ∼ r−12, R ∼ r−6 in contrast with the solutions,
(18), (22) and (28), of the linear Maxwell mimetic theory which have K = RµνRµν ∼ r−8 and R ∼ r0.
This shows clearly that the singularities in the non-linear electrodynamics case are stronger than
that obtained in the linear Maxwell mimetic gravity case. Notably, one may check if geodesics are
extendible beyond these regions. According to Tipler and Krolak [95,96], this indicates the strength of
the singularity. This topic will be discussed in forthcoming studies.

7.2. Energy Conditions

Energy conditions are critical tools to understand cosmological models and/or strong gravitational
fields. We are interested in this study to investigate the energy conditions of the non-linear
electrodynamics case, since the linear case is well known in the GR theory. The Energy conditions
are arranged into four categories: The strong energy (SEC), the weak energy (WEC), the null energy
(NEC) and the dominant energy conditions [1,97]. To satisfy these conditions, the inequalities below
must be fulfilled

SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0,

WEC : ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0,

NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

DEC : ρ ≥ |pr|, ρ ≥ |pt|,

(54)
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where
NL

T0
0 = ρ,

NL

T1
1 = pr and

NL

T2
2 =

NL

T3
3 = pt are the density, radial and tangential pressures,

respectively. Using Equations (42) and (48) in Equation (54) we get

SEC : ρ + pr =
r2q2−3q1

2

r6 > 0, ρ + pr + 2pt =
3q1

2

r6 > 0,

WEC : ρ = r2q2−3q1
2

2r6 > 0, ρ + pr =
r2q2−3q1

2

r6 > 0, ρ + pt =
3q1

2

2r6 > 0,

NEC : ρ + pr =
r2q2−3q1

2

r6 > 0, ρ + pt =
3q1

2

2r6 > 0,

DEC : ρ ≥ |pr| (satisfied), ρ ≥ |pt| (satisfied).

(55)

From this we see that all the energy conditions can be satisfied, given φ > φ1.

8. Thermodynamical Stability and Phase Transition

One of the most exciting topics in physics is the black hole thermodynamics. Two approaches have
been constructed to extract the thermodynamical quantities of the black holes. The first approach, which
was given by Gibbons and Hawking [98,99], was to study the thermal properties of the Schwarzschild
black hole solution through the use of the Euclidean continuation. In the second approach one
has to identify the horizon then define the temperature and finally study the thermodynamical
stability of the black hole [100–124]. In this study, we will follow the second approach to study the
thermodynamics of the black holes derived in Equations (22), (28), (42) and (48) then analyze their
thermodynamical stability. It is of interest to mention here that these black holes are characterized by
the mass, m, the charges (monopole, q and quadrupole, q1) and also by the cosmological constant Λ.

The calculations of the horizons, of the Maxwell electrodynamics cases given by Equations (22)
and (28) and the non-linear electrodynamics cases given by Equations (42) and (48), are carried out
by finding the roots of the unknown function f (r) = 0 which can be seen for specific values of the
parameters which characterized the model. The plots of Figure 1 show that the two roots of f (r) which
determine the black hole are the inner rh and the cosmological rc horizons. It is of interest to note that,
for solutions (22), (28), when m > 0, q > 0 and Λ > 0, one can show that the two roots are possible when
m > mmin = q for solution (22), m > mmin = (32q6Λ/81)1/4 for solution (28) and for the non-linear
case q1 > qmin = (1/6)

√
(3)q2 for solution (42). The most interesting thing is when m = mmin,

or q1 = qmin and one can determine the degenerate horizons rdg = q, (32q6Λ/81)1/4, (1/6)
√

3q2 at
which rh = rc, which is the Nariai black hole. When m < mmin or q1 < qmin, there is no black
hole formulation.

We define the Bekenstein-Hawking entropy as

S(rh) =
1
4

A = πrh
2, (56)

where rh is the event horizon in units of the Planck area and A is the area of the event horizon. To check
the thermodynamical stability of a black hole we have to know the sign of its heat capacity Ch. In the
following, we investigate the thermal stability of the black hole solutions by means of the behavior of
their heat capacities at fixed mass which is defined as [103–107].

Ch =
∂m
∂rh

(
∂rh
∂T

)
m

. (57)

In the event horizon, if the heat capacity has a positive value, i.e., Ch > 0, then the black hole has
a stable region and if (Ch < 0) then the black hole has an unstable region.
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(a) (b) (c) (d)

Figure 1. Schematic plots of horizons. (a) possible horizons of the solution (22); (b) possible horizons
of the solution (28); (c) possible horizons of the solution (42); (d) possible horizons of the solution (48).

To calculate Equation (57), we must derive analytical forms of mh ≡ m(rh) and Th ≡ T(rh). Let us
begin with the calculations of the black hole mass inside the even horizon rh. When we set f (rh) = 0,
and get

mh
Equation (22)

= rh
2 (1 +

q2

rh
2 ),

mh
Equation (28)

= rh
2 (

q2

rh
2 − Λrh

2

6 )

mh
Equation (42)

= rh
2 (1 +

q2

rh
2 +

q1
2

rh
4 )

mh
Equation (48)

= rh
2 (

q2

rh
2 +

q1
2

rh
4 −

Λrh
2

6 ).

(58)

The total mass as a function of the event horizon and charge is represented in Figure 2. As seen
from Figure 2, the black hole mass curve in the horizon radius shows one common property

m(rh → 0)→ ∞, m(rh → ∞)→ ∞. (59)

(a) (b)

Figure 2. Schematic plots of mass. (a) Mass within horizon rh of solutions (22) and (28); (b) Mass within
horizon rh of solutions (42) and (48).

The Hawking temperature of the black holes can be derived by demanding that the singularity at
the horizon in the Euclidean sector of the black hole solutions disappears. Alternatively, we can obtain
the associated temperature in the event horizon r = rh as [108]

T =
κ

2π
, with κ being the surface gravity defined as κ =

f ′(rh)

2
. (60)
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The Hawking temperatures associated with the black hole solutions (22), (28), (42) and (48) are
and get

Th
Equation (22)

= 1
4rh

3π

(
rh

2 − q2) ,

Th
Equation (28)

= − 1
8rh

3π

(
Λrh

4 + 2q2) ,

Th
Equation (42)

= 1
4rh

5π

(
r4 − rh

2q2 − 3q1
2) ,

Th
Equation (48)

= − 1
8rh

5π

(
Λrh

6 + 2rh
2q2 + 6q1

2) ,

(61)

where Th is the Hawking temperature at the event horizon. This show that there exists a radius rmin at
which Th vanishes, while the ultracold black holes are being characterized by the regions rh < rmin
where Th goes below the absolute zero. Including the gravitational effect of thermal radiation, one can
show that at some very high temperature Tmax the radiation would become unstable and collapse to a
black hole [109]. Hence, the pure (A)dS solution is only stable at temperatures T < Tmax as is clear
from Figure 3. Above Tmax, only the heavy black holes would have stable configurations [109].

(a) (b)

Figure 3. Schematic plots of temperature. (a) Temperature at horizon of solutions (22) and (28);
(b) Temperature at horizon of solutions (42) and (48).

Next we evaluate the heat capacity by substituting Equations (58) and (61) into Equation (57)
and get

Ch
Equation (22)

=
2rh

2π(rh
2−q2)

3q2−rh
2 ,

Ch
Equation (28)

=
2rh

2π(Λrh
4+q2)

Λrh
4−6q2 ,

Ch
Equation (42)

=
4rh

2π(rh
4−q2rh

2−3q1
2)

3q2rh
2−rh

4+15q1
2 ,

Ch
Equation (48)

=
4rh

2π(Λrh
6+2q2rh

2+6q1
2)

Λrh
6−6q2rh

2−30q1
2 .

(62)

It is not easy to extract information directly from Equation (62), therefore we plot them for
particular values of the black hole parameters as shown in Figure 4. For solutions (22) and (28) a
typical pattern of the heat capacity has been obtained in literature c.f. [110]. However, we find that the
negative heat capacity region is associated with a positive temperature contrary to our case.
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(a) (b)

Figure 4. Schematic plots of heat capacity. (a) Heat capacity at horizon of solutions (22) and (28);
(b) Heat capacity at horizon of solutions (42) and (48).

The free energy in the grand canonical ensemble which is called Gibbs free energy can be
defined as [111]

G(rh) = M(rh)− T(rh)S(rh), (63)

where M(rh), T(rh) and S(rh) are the mass of the black hole, the temperature and entropy at the event
horizon, respectively. Using Equations (56), (58) and (61) in Equation (63) we get

Gh
Equation (22)

= rh
2+3q2

4rh
,

Gh
Equation (28)

= 18q2+Λrh
4

24rh
,

Gh
Equation (42)

= rh
4+3rh

2q2+5q1
2

2rh
3 ,

Gh
Equation (48)

= Λrh
6+18rh

2q2+30q1
2

24rh
3 , .

(64)

It is of interest to note that when the charge parameter q → 0 the Gibb’s free energy of the
spacetimes of Equations (22) and (28) will be coincident with that given in [112]. The behaviors
of the Gibb’s energy of our black holes are presented in Figure 5a,b for particular values of the
model parameters.

(a) (b)

Figure 5. Schematic plots of free energy. (a) Free energy of of solutions (22) and (28); (b) Free energy of
of solutions (42) and (48).



Symmetry 2018, 10, 559 16 of 21

9. Discussion of the Main Results

In this research, we have studied the mimetic gravitational theory. We have applied a spherically
symmetric spacetime with one unknown function to the field equations of the mimetic theory and
have obtained a black hole solution which is not different from this obtained in orthodox general
relativity, i.e., Schwarzschild spacetime. Then we have used another spherically symmetric spacetime
with two unknown functions and have applied it to the mimetic theory including cosmological
constant. We have derived a black hole solution that behaves like (A)dS spacetime. We repeated the
same calculations to flat horizons spacetimes with one and two unknown functions and obtained
the same well-known solutions derived in GR. All those solutions have dynamical mimetic field,
i.e., ψ(r) 6= constant because the field equations of the mimetic are not able to fix the mimetic field.

To go deep into these solutions we have investigated the singularity and have shown that all
the invariants constructed from the curvature have a singularity at r = 0. The asymptotic behavior
of the Kretschmann invariant and the Ricci tensor squared and the Ricci scalar have the form
K = RµνRµν ∼ r−8, R ∼ r0 .

Next, we have derived the field equations of the mimetic field equations coupled with a non-linear
electrodynamics. We have applied these field equations to the same spherically symmetric spacetimes
used before. We derived a new charged spherically symmetric black hole that includes beside the
monopole a quadrupole term. We repeated the same procedures to the flat horizon spacetime and
also got a new black hole with monopole and quadrupole terms. To understand the physics of these
black holes we studied the singularities. We have shown that the singularities of these black holes
are stronger than those of GR. The deviation of singularities from GR is due to the presence of the
quadrupole term whose non-linear arbitrary function is responsible for it. Are these strong singularities
extendable? This will be studied elsewhere.

Also, we discussed some thermodynamical quantities of the non-linear black holes. We have
shown that these black holes have two horizons, one is the inner horizon and the other is the
cosmological one. We determine a minimum value of the black hole mass at which the two horizons
coincide forming the degenerate horizon, above this minimum mass the black hole would have
two horizons, below the minimum mass there is no black hole formation. Also, we have studied the
thermodynamics of the black hole and analyzed its thermal phase transition based on the discontinuous
change of the specific heat sign. As Figure 3b shows, in the non-linear case, the temperature drops
below zero when rh < rmin, while the black hole heat capacity is negative at these regions and so the
black hole is unstable. Finally, we have studied the free energy of these spacetimes and have shown
their pattern in Figure 5. As Figure 5b shows the non-linear charged black holes become more stable
globally [113].
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