# MQC-MB: Multiphoton Quantum Communication Using Multiple-Beam Concept in Free Space Optical Channel

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Works

## 3. Formulation of FSO Multiphoton Quantum Cryptography

## 4. The Implementation of MQC-MB

#### 4.1. Initial Phase

#### 4.1.1. Step 1: Preparation of Quantum Signals

#### 4.1.2. Step 2: Creation of Multiphoton

#### 4.1.3. Step 3: Preparation of FSO Terminals and Quantum Channel

#### 4.2. Multiple Beam Quantum Communication Phase

#### 4.2.1. Step 1: Transmission of Quantum Signal

#### 4.2.2. Step 2: Multiple-Beam Processing

#### 4.2.3. Step 3: Detection of Quantum Signal

## 5. Parameter Setting

## 6. Numerical Results and Performance Analysis

## 7. Security Analysis

## 8. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bouchard, F.; Sit, A.; Hufnagel, F.; Abbas, A.; Zhang, Y.; Heshami, K.; Fickler, R.; Marquardt, C.; Leuchs, G.; Boyd, R.W.; et al. Quantum cryptography with twisted photons through an outdoor underwater channel. Opt. Express
**2018**, 26, 22563–22573. [Google Scholar] [CrossRef] [PubMed] - Tarantino, S.; da Lio, B.; Cozzolino, D.; Bacco, D. Feasibility study of Quantum Communications in Aquatic Scenarios. Optik
**2020**, 216, 164639. [Google Scholar] [CrossRef] - Harun, N.Z.; Zukarnain, Z.A.; Hanapi, Z.M.; Ahmad, I. Evaluation of Parameters Effect in Multiphoton Quantum Key Distribution Over Fiber Optic. IEEE Access
**2018**, 6, 47699–47706. [Google Scholar] [CrossRef] - Elmabrok, O.; Razavi, M. Wireless quantum key distribution in indoor environments. J. Opt. Soc. Am. B Opt. Phys.
**2018**, 35, 197–207. [Google Scholar] [CrossRef] - Noor, N.H.; Naji, A.W.; Al-khateeb, W. Theoretical Analysis of Multiple Transmitters/Receivers on the Performance of Free Space Optics (FSO) Link. In Proceedings of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 12–13. [Google Scholar] [CrossRef]
- El Rifai, M. Quantum Secure Communication Using Polarization Hopping Multi-Stage Protocols. Ph.D. Thesis, University of Oklahoma, Norman, Oklahoma, 2016. [Google Scholar]
- Chan, K.W.C.; el Rifai, M.; Verma, P.; Kak, S.; Chen, Y. Security Analysis of the Multi-Photon Three-Stage Quantum Key Distribution. Int. J. Cryptogr. Inf. Secur.
**2015**, 5, 4. [Google Scholar] [CrossRef] - Chan, K.W.C.; El Rifai, M.; Verma, P.K.; Kak, S.; Chen, Y. Multi-Photon Quantum Key Distribution Based on Double-Lock Encryption. In Proceedings of the CLEO: QELS_Fundamental Science 2015, San Jose, CA, USA, 10–15 May 2015. [Google Scholar] [CrossRef] [Green Version]
- Kak, S. A three-stage Quantum Cryptography protocol. Found. Phys. Lett.
**2006**, 19, 293–296. [Google Scholar] [CrossRef] [Green Version] - Yin, L.; Pan, D.; Long, G. Quantum Secure Direct Communication: A Survey of Basic Principle and Recent Development. J. Fiz. Malaysia
**2018**, 39, 2–7. [Google Scholar] - Tang, F. Scintillation discriminator improves free-space quantum key distribution. Chin. Opt. Lett.
**2013**, 11, 9–12. [Google Scholar] [CrossRef] - Wang, X.; Zhao, N.; Chen, N.; Zhu, C.; Pei, C. Effects of atmospheric turbulence on the single-photon receiving efficiency and the performance of quantum channel with the modified approximate elliptic-beam model assumption. Quantum Inf. Process.
**2018**, 17, 14. [Google Scholar] [CrossRef] - Wang, W.; Xu, F.; Lo, H.K. Prefixed-threshold real-time selection method in free-space quantum key distribution. Phys. Rev. A
**2018**, 97, 032337. [Google Scholar] [CrossRef] [Green Version] - El-Mashade, M.; Aly, M.; Toeima, A. Performance Evaluation of FSO System with MIMO Technique in Different Operating Environments. Phys. Sci. Int. J.
**2015**, 7, 33–48. [Google Scholar] [CrossRef] - Wahab, F.A.; Leong, T.K.; Zulkifli, H.; Ibrahim, M.I.; Talib, M.A.; Zamri, N.A.; Ibrahim, O.K. Multiple Transmitters & Receivers for Free Space Optical Communication Link Performance Analysis. J. Telecommun. Electron. Comput. Eng.
**2016**, 8, 29–32. [Google Scholar] - Miglani, R.; Malhotra, J.S. Statistical Analysis of FSO Links Employing Multiple Transmitter/Receiver Strategy over Double-Generalized and Gamma—Gamma Fading Channel Using Different Modulation Techniques. J. Opt. Commun.
**2018**, 40, 295–305. [Google Scholar] [CrossRef] - Caputo, A.C. Wireless Networked Video. In Digital Video Surveillance and Security; Butterworth-Heinemann: Oxford, UK, 2014; pp. 123–167. [Google Scholar]
- Sharma, V.; Banerjee, S. Analysis of atmospheric effects on satellite based quantum communication: A comparative study. arXiv
**2017**, arXiv:1711.08281. [Google Scholar] [CrossRef] [Green Version] - Xiao, H.; Zhang, Z. Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states. Quantum Inf. Process.
**2017**, 16, 13. [Google Scholar] [CrossRef] - Lopes, M.; Sarwade, N. Modeling and Performance Analysis of Free Space Quantum Key Distribution. In Information Systems Design and Intelligent Applications; Springer: New Delhi, India, 2016; Volume 435, pp. 27–40. [Google Scholar]
- Bash, B.A.; Chandrasekaran, N.; Shapiro, J.H.; Guha, S. Quantum Key Distribution Using Multiple Gaussian Focused Beams. arXiv
**2016**, arXiv:1604.08582. [Google Scholar] - Sun, X.; Djordjevic, I.B.; Neifeld, M.A. Multiple spatial modes based QKD over marine free-space optical channels in the presence of atmospheric turbulence. Opt. Express
**2016**, 24, 27663–27673. [Google Scholar] [CrossRef] [Green Version] - Xiao, H.; Ouyang, S.; Theodore, A. Analysis of polarization coding for subcarrier multiplexing quantum key distribution. Quantum Inf. Process.
**2019**, 18, 130. [Google Scholar] [CrossRef] - Mehic, M.; Maurhart, O.; Rass, S.; Komosny, D.; Rezac, F. Analysis of the Public Channel of Quantum Key Distribution Link. IEEE J. Quantum Electron.
**2017**, 53, 1–8. [Google Scholar] [CrossRef] - Khodr, M. Evaluations of Maximum Distance Achieved Using the Three Stage Multiphoton Protocol at 1550nm, 1310nm, and 850nm. In Proceedings of the CYBER 2017: The Second International Conference on Cyber-Technologies and Cyber-Systems Evaluations, Barcelona, Spain, 12–16 November 2017; pp. 32–34. [Google Scholar]
- Khodr, M. Evaluations of Quantum Bit Error Rate Using the Three Stage Multiphoton Protocol. In Proceedings of the 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA) Evaluations, Ras al-Khaimah, UAE, 21–23 November 2017; pp. 2–5. [Google Scholar]
- Vasylyev, D.; Vogel, W.; Semenov, A.A. Theory of atmospheric quantum channels based on the law of total probability. Phys. Rev. A
**2018**, 97, 063852. [Google Scholar] [CrossRef] [Green Version] - Alkholidi, A.G.; Altowij, K.S. Climate effects on performance of free space optical communication systems in Yemen. Front. Optoelectron.
**2014**, 7, 91–101. [Google Scholar] [CrossRef] - Shumani, M.M.; Abdullah, M.F.L.; Suriza, A.Z. The Effect of Haze Attenuation on Free Space Optics Communication (FSO) at Two Wavelengths under Malaysia Weather. In Proceedings of the 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity ICCCE 2016, Kuala Lumpur, Malaysia, 25–27 July 2016; pp. 459–464. [Google Scholar] [CrossRef]
- Trinh, P.V.; Pham, T.V.; Nguyen, H.V.; Ng, S.X.; Pham, A.T. Performance of free-space QKD systems using SIM/BPSK and dual-threshold/direct-detection. In Proceedings of the 2016 IEEE Globecom Work. GC Wkshps 2016, Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Trinh, P.V.; Pham, T.V.; Dang, N.T.; Nguyen, H.V.; Ng, S.X.; Pham, A.T. Design and Security Analysis of Quantum Key Distribution Protocol over Free-Space Optics Using Dual-Threshold Direct-Detection Receiver. IEEE Access
**2018**, 6, 4159–4175. [Google Scholar] [CrossRef] - Al-Gailani, S.A.; Mohammad, A.B.; Shaddad, R.Q. Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Optik
**2013**, 124, 4798–4801. [Google Scholar] [CrossRef] - Peatross, J.; Ware, M. Polarization of Light. In Physics of Light and Optics; Brigham Young University: Provo, UT, USA, 2015; pp. 143–168. [Google Scholar]
- PVerma, K.; El Rifai, M.; Chan, K.W.C. Multi-Photon Quantum Secure Communication; Springer: Singapore, 2019. [Google Scholar]
- el Rifai, M.; Chan, K.W.C.; Verma, P.K. Multi-stage quantum secure communication using polarization hopping. Secur. Commun. Networks
**2015**, 8, 4333–4342. [Google Scholar] [CrossRef] - Harun, N.Z.; Zukarnain, Z.A.; Hanapi, Z.M.; Ahmad, I. Hybrid M-Ary in Braided Single Stage Approach for Multiphoton Quantum Secure Direct Communication Protocol. IEEE Access
**2019**, 7, 22599–22612. [Google Scholar] [CrossRef] - Hecht, E. Optics, 5th ed.; Pearson Education: Essex, UK, 2017. [Google Scholar]
- Bhosale, S.; Darunkar, B.; Punekar, N.; Macdonald, G.; Verma, P. Polarization Based Secure AES Key Transmission over Optical Fiber. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Ayashi, B.M.H. Finite-block-length analysis in classical and quantum information theory. Proc. Jpn. Acad. Ser. B
**2017**, 93, 99–124. [Google Scholar] - Al-Gailani, S.A.; Mohammad, A.B.; Shaddad, R.Q.; Sheikh, U.U.; Elmagzoub, M.A. Hybrid WDM/multibeam free-space optics for multigigabit access network. Photonic Netw. Commun.
**2015**, 29, 138–145. [Google Scholar] [CrossRef] - Noor, N.H.M.; Naji, A.W.; Al-Khateeb, W. Performance analysis of a free space optics link with multiple transmitters/receivers. IIUM Eng. J.
**2012**, 13, 49–58. [Google Scholar] - Husagić-Selman, A.; Al-Khateeb, W.; Saharudin, S. Feasibility of QKD over FSO link. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012; pp. 362–368. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Zhao, Z.; Xie, G.; Liao, P.; Pang, K.; Song, H.; Liu, C.; Ren, Y.; Labroille, G.; et al. High-Capacity Free-Space Optical Communications Between a Ground Transmitter and a Ground Receiver via a UAV Using Multiplexing of Multiple Orbital- Angular-Momentum Beams. Sci. Rep.
**2017**, 7, 17427. [Google Scholar] [CrossRef] - Gawron, P.; Kurzyk, D.; Id, Ł.P. QuantumInformation. jl—A Julia package for numerical computation in quantum information theory. PLoS ONE
**2018**, 13, e0209358. [Google Scholar] [CrossRef] [Green Version]

**Figure 2.**Multiple-beam technique in FSO link [32].

**Figure 4.**The optimum average number of photons ${\mu}_{opt}$ as the function of the maximum number of photons ${N}_{max}$ that Alice can use to encode her bits.

**Figure 10.**Comparison of the secret key with the single beam and multiple beam over channel loss and fluctuating channel loss.

Parameter | Setting |
---|---|

$\mathrm{Transmitted}\mathrm{power}({P}_{TX}$) | 12 mW (12 dBm) |

Wavelength (λ) | 1550 nm |

Divergence angle (D) | 1 mrad |

Transmit & receive aperture diameter (ds & dr) | 0.15 m |

Visibility under clear weather (V) | 10 km |

**Table 2.**Comparison of SKR with the single beam and multiple beam over channel loss and fluctuating channel loss.

Loss (dB) | Secret Key Rate (K/vs) | |||||
---|---|---|---|---|---|---|

Single-Beam | Multiple-Beam | |||||

$\mathit{\sigma}=0.3$ | $\mathit{\sigma}=0.6$ | $\mathit{\sigma}=0.9$ | $\mathit{\sigma}=0.3$ | $\mathit{\sigma}=0.6$ | $\mathit{\sigma}=0.9$ | |

5 | −1.953 | −2.265 | −2.464 | −1.216 | −1.526 | −1.726 |

10 | −4.712 | −2.807 | −2.597 | −3.872 | −2.00 | −1.808 |

15 | −14.108 | −5.109 | −3.585 | −13.163 | −4.164 | −2.640 |

20 | −30.247 | - | - | −28.497 | −7.891 | −4.218 |

25 | - | - | - | −51.985 | −13.941 | −7.038 |

30 | - | - | - | - | - | - |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Harun, N.Z.; Zukarnain, Z.A.; Hanapi, Z.M.; Ahmad, I.; Khodr, M.F.
MQC-MB: Multiphoton Quantum Communication Using Multiple-Beam Concept in Free Space Optical Channel. *Symmetry* **2021**, *13*, 66.
https://doi.org/10.3390/sym13010066

**AMA Style**

Harun NZ, Zukarnain ZA, Hanapi ZM, Ahmad I, Khodr MF.
MQC-MB: Multiphoton Quantum Communication Using Multiple-Beam Concept in Free Space Optical Channel. *Symmetry*. 2021; 13(1):66.
https://doi.org/10.3390/sym13010066

**Chicago/Turabian Style**

Harun, Nur Ziadah, Zuriati Ahmad Zukarnain, Zurina Mohd Hanapi, Idawaty Ahmad, and Majed F. Khodr.
2021. "MQC-MB: Multiphoton Quantum Communication Using Multiple-Beam Concept in Free Space Optical Channel" *Symmetry* 13, no. 1: 66.
https://doi.org/10.3390/sym13010066