Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on Nanofluid Flow
Abstract
:1. Introduction
2. Mathematical Analysis
3. Boundary Conditions
4. Application of HAM
5. Convergence of the HAM Solutions
6. Results and Discussion
7. Conclusions
- a
- The semi-analytical relation between and is obtained.
- b
- Both first-order slip parameter and second-order slip parameter have positive effects on of the MHD flow, but nanofluids can transfer heat more efficiently with a second-order slip condition than with a Navier’s condition.
- c
- In the alumina–water nanofluid, is higher than that of titania–water nanofluid.
- d
- The positive correlation between slip parameters and is significant for the titania-water nanofluid.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbol | Description |
magnetic field strength | |
specific heat (m/sK) | |
Brownian motion constant | |
thermophoresis diffusion coefficient | |
H | radius (m) |
h | heat transfer coefficient (W/mK) |
Hartmann number | |
dimensionless heat transfer coefficient | |
k | thermal conductivity (W/mK) |
free stream temperature | |
ratio of the Brownian to | |
thermophoretic diffusivities | |
non-dimensional pressure drop | |
Nusselt number | |
p | pressure (Pa) |
surface heat flux | |
radiative heat flux | |
nanoparticle volume fraction | |
density | |
transverse direction | |
, | slip parameters of velocity |
B | bulk mean |
U | axial velocity (m/s) |
T | temperature (K) |
k | thermal conductivity |
dynamic viscosity (kg/m s) | |
Stefan–Boltzman constant | |
ratio of wall and fluid temperature | |
difference to absolute temperature | |
Subscripts | |
x, y | coordinate system |
p | nanoparticle |
base fluid | |
i | velocity components |
References
- Li, T.; Liu, B.; Zhou, J.Z.; Xi, W.X.; Huai, X.L.; Zhang, H. A Comparative Study of Cavitation Characteristics of Nano-Fluid and Deionized Water in Micro-Channels. Mathematics 2020, 11, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, Z.P.; Lv, X.; Ma, H.H.; Su, L.B.; Zhang, M.Q. Analysis of Flow Characteristics and Pressure Drop for an Impinging Plate Fin Heat Sink with Elliptic Bottom Profiles. Appl. Sci. 2020, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Q.L.; Nakayama, A.; Qiu, T. Effect of temperature jump on forced convective transport of nanofluids in the continuum flow and slip flow regimes. Chem. Eng. Sci. 2015, 137, 730–739. [Google Scholar] [CrossRef]
- Hedayati, F.; Domairry, G. Effects of nanoparticle migration and asymmetric heating on mixed convection of TiO2-H2O nanofluid inside a vertical microchannel. Powder Technol. 2015, 272, 250–259. [Google Scholar] [CrossRef]
- Andhare, R.S.; Shooshtari, A.; Dessiatoun, S.V.; Ohadi, M.M. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration. Appl. Thermal Eng. 2016, 96, 178–189. [Google Scholar] [CrossRef]
- Ooi, E.H.; Popov, V. Numerical study of on the natural convection in Cu-water nanofluid. Int. J. Thermal Sci. 2013, 65, 178–188. [Google Scholar] [CrossRef]
- Ravnik, J.; Šušnjara, A.; Tibaut, J.; Poljak, D.; Cvetkovi, M. Stochastic modelling of nanofluids using the fast Boundary-Domain Integral Method. Eng. Anal. Boundary Elem. 2019, 107, 185–197. [Google Scholar] [CrossRef]
- Maxwell, J.C. Temperature. On Stresses in Rarefied Gases Arising from Inequalities of Temperature. Philos. Trans. R. Soc. 1879, 170, 231–256. [Google Scholar]
- Kou, Z.H.; Bai, M.L. Effects of wall slip and temperature jump on heat and mass transfer characteristics of an evaporating thin film. Int. Commun. Heat Mass Transf. 2011, 38, 874–878. [Google Scholar] [CrossRef]
- Avramenko, A.A.; Tyrinov, A.I.; Shevchuk, I.V.; Dmitrenko, N.P.; Kravchuk, A.V.; Shevchuk, V.I. Mixed convection in a vertical circular microchannel. Int. J. Therm. Sci. 2017, 121, 1–12. [Google Scholar] [CrossRef]
- Thompson, P.A.; Troian, S.M. A general boundary condition for liquid flowat solid surfaces. Nature 1997, 389, 360–362. [Google Scholar] [CrossRef]
- Beskok, A.; Karniadakis, G.E. A model for flows in channels, pipes, and ducts at micro and nano scales. Microsc. Thermophys. Eng. 1999, 3, 43–77. [Google Scholar]
- Wu, L.A. A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 2008, 93, 253103. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xu, Y.X.; Hang, X. A Non-Newtonian Magnetohydrodynamics (MHD) Nanofluid Flow and Heat Transfer with Nonlinear Slip and Temperature Jump. Mathematics 2019, 7, 1199. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, F.; Khaled, S.M.; Ebaid, A. MHD Flow of Nanofluid with Homogeneous-Heterogeneous Reactions in a Porous Medium under the influence of Second-Order Velocity. Mathematics 2019, 7, 220. [Google Scholar] [CrossRef] [Green Version]
- Noeiaghdam, S.; Dreglea, A.; He, J.H.; Avazzadeh, Z.; Suleman, M.; Araghi, M.A.F.; Sidorov, D.N.; Sidorov, N. Error Estimation of the Homotopy Perturbation Method to Solve Second Kind Volterra Integral Equations with Piecewise Smooth Kernels: Application of the CADNA Library. Symmetry 2020, 12, 1730. [Google Scholar] [CrossRef]
- Nobari, M.R.H.; Gharali, K. A numerical study of flow and heat transfer in internally finned rotating straight pipes and stationary curved pipes. Int. J. Heat Mass Transf. 2005, 49, 1185–1194. [Google Scholar] [CrossRef]
- Ganga, B.; Ansari, S.M.Y.; Ganesh, N.V.; Abdul Hakeem, A.K. MHD flow of Boungiorno model nanofluid over a vertical plate with internal heat generation/absorption. Propuls. Power Res. 2016, 5, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Wang, S.N.; Zheng, L.C.; Zhang, X.X. Heat transfer of nanofluids considering nanoparticle migration and second-order slip velocity. Appl. Math. Mech. 2016, 38, 125–136. [Google Scholar] [CrossRef]
- Moein, S.; Mohsen, K. Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis. Heat Mass Transf. 2018, 54, 2995–3014. [Google Scholar]
- Liao, S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Fan, T. Applications of Homotopy Analysis Method in Boundary Layer Flow and Nanofluid Flow Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2012. (In Chinese). [Google Scholar]
- Yang, C.; Li, W.; Sano, Y.; Mochizuki, M.; Nakayama, A. On the anomalous convective heat transfer enhancement in nanofluids: A theoretical answer to the nanofluids controversy. J. Heat Transf. 2013, 135, 054504. [Google Scholar] [CrossRef]
BVPh2.0 | HAM | Relative Error(%) | |
---|---|---|---|
0.01 | −0.00286834 | −0.00286673 | 0.05624769 |
0.02 | −0.00396349 | −0.00394892 | 0.36760532 |
0.03 | −0.00527046 | −0.00529243 | 0.33803511 |
0.04 | −0.00678941 | −0.00671253 | 1.13235171 |
Yang et al. [24] | HAM | Relative Error(%) | |
---|---|---|---|
0.1 | 7.26823 | 7.26679 | 0.01981 |
0.2 | 7.55883 | 7.55889 | 0.00079 |
0.3 | 7.69768 | 7.69418 | 0.04547 |
0.4 | 7.79492 | 7.79163 | 0.04225 |
0.5 | 7.85227 | 7.85200 | 0.00344 |
0.6 | 7.90000 | 7.90338 | 0.04278 |
0.7 | 7.94920 | 7.94526 | 0.04956 |
0.8 | 7.95957 | 7.95947 | 0.00126 |
0.9 | 7.97313 | 7.97791 | 0.05995 |
1 | 8.04496 | 8.04478 | 0.00224 |
2 | 8.12940 | 8.12983 | 0.00529 |
10 | 8.21841 | 8.21630 | 0.02567 |
Types of Fluids | |||||
---|---|---|---|---|---|
-Water | -Water | ||||
0.1 | 0.1 | 0.5 | 0.01 | 0.000127706 | 0.000129222 |
0.2 | 0.000131924 | 0.014154800 | |||
0.2 | 0.000179880 | 0.020517000 | |||
10 | 0.000127722 | 0.000127916 | |||
0.04 | 0.000119804 | 0.000127917 |
Types of Fluids | |||||
---|---|---|---|---|---|
-Water | -Water | ||||
0.1 | 0.1 | 0.5 | 0.01 | 5.62714 | 4.93726 |
0.2 | 8.57429 | 7.38838 | |||
0.2 | 8.95671 | 7.71938 | |||
10 | 8.69342 | 7.40811 | |||
0.04 | 8.56113 | 7.37139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Liu, Y.; Cao, J. Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on Nanofluid Flow. Symmetry 2021, 13, 64. https://doi.org/10.3390/sym13010064
Zhu J, Liu Y, Cao J. Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on Nanofluid Flow. Symmetry. 2021; 13(1):64. https://doi.org/10.3390/sym13010064
Chicago/Turabian StyleZhu, Jing, Ye Liu, and Jiahui Cao. 2021. "Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on Nanofluid Flow" Symmetry 13, no. 1: 64. https://doi.org/10.3390/sym13010064
APA StyleZhu, J., Liu, Y., & Cao, J. (2021). Effects of Second-Order Velocity Slip and the Different Spherical Nanoparticles on Nanofluid Flow. Symmetry, 13(1), 64. https://doi.org/10.3390/sym13010064