A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem
Abstract
:1. Introduction
2. Preliminaries
- (i)
- , ,
- (ii)
- ,
- (iii)
- , ,
- (iv)
- for , where ,
- (v)
- .
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyapunov, A.M. Probleme général de la stabilité du mouvement, (French Translation of a Russian paper dated 1893). Ann. Fac. Sci. Univ. Toulouse 1907, 2, 27–247. [Google Scholar]
- Brown, R.C.; Hinton, D.B. Lyapunov inequalities and their applications. In Survey on Classical Inequalities; Rassias, T.M., Ed.; Springer: Dordrecht, Germany, 2000; pp. 1–25. [Google Scholar]
- Pinasco, J.P. Lyapunov-Type Inequalities with Applications to Eigenvalue Problems; Springer: New York, NY, USA, 2013. [Google Scholar]
- Cheng, S. Lyapunov inequalities for differential and difference equations. Fasc. Math. 1991, 304, 25–41. [Google Scholar]
- Tiryaki, A. Recent developments of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl. 2010, 5, 231–248. [Google Scholar]
- Ntouyas, S.K.; Ahmad, B.; Horikis, T.P. Recent Developments of LyapunovType Inequalities for Fractional Differential Equations. In Differential and Integral Inequalities; Andrica, D., Rassias, T., Eds.; Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2019; Volume 151. [Google Scholar]
- Hartman, P.; Wintner, A. On an oscillation criterion of Lyapunov. Amer. J. Math. 1951, 73, 885–890. [Google Scholar] [CrossRef]
- Nehari, Z. On the zeros of solutions of second order linear differential equations. Am. J. Math. 1954, 76, 689–697. [Google Scholar] [CrossRef]
- Aktaş, M.F.; Çakmak, D. Lyapunov-type inequalities for third-order linear differential equations under the non-conjugate boundary conditions. Differ. Equ. Appl. 2018, 10, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Lyapunov-type inequalities for certain higher-order difference equations with mixed nonlinearities. Adv. Differ. Equ. 2018, 2018, 229. [Google Scholar] [CrossRef]
- Liu, H. Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, 2018, 22. [Google Scholar] [CrossRef] [Green Version]
- Aktaş, M.F.; Çakmak, D. Lyapunov-type inequalities for fourth-order boundary value problems. RACSAM 2019, 113, 615–625. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Sun, S. Lyapunov inequalities of left focal q-difference boundary value problems and applications. Adv. Differ. Equ. 2019, 113, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Chidouh, A.; Torres, D.F.M. A generalized Lyapunov’s inequality for a fractional boundary value problem. J. Comput. Appl. Math. 2017, 312, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; özbekler, A. Lyapunov type inequalities for mixed nonlinear Riemann–Liouville fractional differential equations with a forcing term. J. Comput. Appl. Math. 2017, 314, 69–78. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Z. Lyapunov type inequalities for the Riemann–Liouville fractional differential equations of higher order. Adv. Differ. Equ. 2017, 2017, 270. [Google Scholar] [CrossRef] [Green Version]
- Dhar, S.; Kong, Q.; McCabe, M. Fractional boundary value problems and Lyapunov-type inequalities with fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2016, 43, 1–16. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 2013, 16, 978–984. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. On a Lyapunov-type inequality and the zeros of a certain MittagLeffler function. J. Math. Anal. Appl. 2014, 412, 1058–1063. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Lyapunov-type inequality for an anti-periodic fractional boundary value problem. Fract. Calc. Appl. Anal. 2017, 20, 284–291. [Google Scholar] [CrossRef]
- Gholami, Y. Lyapunov inequalities of nested fractional boundary value problems and applications. Trans. Razmadze Math. Inst. 2018, 172, 189–204. [Google Scholar] [CrossRef]
- Ma, D. A generalized Lyapunov inequality for a higher-order fractional boundary valueproblem. J. Inequalities Appl. 2016, 2016, 261. [Google Scholar] [CrossRef] [Green Version]
- Dhar, S.; Kelly, J.S. A non Green’s function approach to fractional Lyapunov-type inequalities with applications to multivariate domains. Differ. Appl. 2019, 3, 409–425. [Google Scholar] [CrossRef]
- Dhar, S.; Kong, Q. Fractional Lyapunov-type inequalities with mixed boundary conditions on univariate and multivariate domains. J. Fract. Calc. Appl. 2020, 11, 148–159. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cabrera, I.; Sadarangani, K.; Samet, B. Hartman-Wintnertype inequalities for a class of nonlocal fractional boundary value problems. Math. Meth. Appl. Sci. 2016, 40, 129–136. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Zhang, X.; Li, H. A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem. Symmetry 2021, 13, 29. https://doi.org/10.3390/sym13010029
Zou Y, Zhang X, Li H. A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem. Symmetry. 2021; 13(1):29. https://doi.org/10.3390/sym13010029
Chicago/Turabian StyleZou, Yumei, Xin Zhang, and Hongyu Li. 2021. "A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem" Symmetry 13, no. 1: 29. https://doi.org/10.3390/sym13010029
APA StyleZou, Y., Zhang, X., & Li, H. (2021). A New Proof for Lyapunov-Type Inequality on the Fractional Boundary Value Problem. Symmetry, 13(1), 29. https://doi.org/10.3390/sym13010029