Influence of Load and Phase of Contraction on Lateral Symmetries in Flywheel Squats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Testing Procedures
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Reliability
3.2. Absolute Differences
3.3. Symmetry
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruas, C.V.; Minozzo, F.; Pinto, M.D.; Brown, L.E.; Pinto, R.S. Lower-extremity strength ratios of professional soccer players according to field position. Kinesiology 2015, 47, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Heise, G. Influence of weight distribution asymmetry on the biomechanics of a barbell back squat. J. Strenght Cond. Res. 2012, 26, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Read, P.; Chavda, S.; Jarvis, P.; Turner, A. Using unilateral strength, power and reactive strength tests to detect the magnitude and direction of asymmetry: A test-retest design. Sports 2019, 7, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DosʼSantos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Assessing asymmetries in change of direction speed performance: Application of change of direction deficit. J. Strength Cond. Res. 2019, 33, 2953–2961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuñez Sanchez, F.J.; De Villarreal, E.S. Does flywheel paradigm training improve muscle volume and force? A meta-analysis. J. Strength Cond. Res. 2017, 31, 3177–3186. [Google Scholar] [CrossRef]
- Martinez-Aranda, L.M.; Fernandez-Gonzalo, R. Effects of inertial setting on power, force, work, and eccentric overload during flywheel resistance exercise in women and men. J. Strength Cond. Res. 2017, 31, 1653–1661. [Google Scholar] [CrossRef]
- Kannus, P. Isokinetic Evaluation of Muscular Performance. Int. J. Sports Med. 1994, 15, S11–S18. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.; Bampouras, T. A comparison of isokinetic and functional methods of assessing bilateral strength imbalance. J. Strenght Cond. Res. 2010, 24, 1553–1558. [Google Scholar] [CrossRef]
- Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the magnitude and direction of asymmetry during the squat, countermovement and drop jump tests in elite youth female soccer players. J. Sports Sci. 2019, 7. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Asymmetries in single and triple hop are not detrimental to change of direction speed. J. Trainology 2017, 6, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Maffiuletti, N.A.; Bizzini, M.; Widler, K.; Munzinger, U. Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA. Clin. Orthop. Relat. Res. 2010, 468, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-overload production during the flywheel squat exercise in young soccer players: Implications for injury prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, S.; Salem, G. Bilateral differences in the net joint torques during the squat exercise. J. Strenght Cond. Res. 2007, 21, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel resistance training calls for greater eccentric muscle activation than weight training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Gual, G.; Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Tesch, P. Effects of in-season inertial resistance training with eccentric overload in a sports population at risk for patellar tendinopathy. J. Strenght Cond. Res. 2016, 30, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; Fleming, A.; Coates, A.; Dello Iacono, A. Validity and reliability of a flywheel squat test in sport. J. Sports Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Spudić, D.; Smajla, D.; Šarabon, N. Validity and reliability of force–velocity outcome parameters in flywheel squats. J. Biomech. 2020, 107, 109824. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb asymmetries: Understanding how to calculate differences from bilateral and unilateral tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Croisier, J.L.; Forthomme, B.; Namurois, M.H.; Vanderthommen, M.; Crielaard, J.M. Hamstring muscle strain recurrence and strength performance disorders. Am. J. Sports Med. 2002, 30, 199–203. [Google Scholar] [CrossRef]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Pickup, L. Symmetry and performance in middle distance runners. Int. J. Sport. Med. 1998, 19, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Villanueva, A.; Suarez-Arrones, L.; Rodas, G.; Fernandez-Gonzalo, R.; Tesch, P.; Linnehan, R.; Kreider, R.; Di Salvo, V. MRI-based regional muscle use during hamstring strengthening exercises in elite soccer players. PLoS ONE 2016, 11, e0161356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, K.M.; Wagle, J.P.; Sato, K.; Taber, C.B.; Yoshida, N.; Bingham, G.E.; Stone, M.H. Characterising overload in inertial flywheel devices for use in exercise training. Sport. Biomech. 2018, 18, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Lake, J.; Irineu, L.; Papandopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2018, 1–7. [Google Scholar] [CrossRef]
- Sabido, R.; Hernández-davó, J.L.; Capdepon, L.; Tous-fajardo, J. How are mechanical, physiological, and perceptual variables affected by the rest interval between sets during a flywheel resistance session? Front. Physiol. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Bishop, C.; Read, P.; McCubbine, J.; Turner, A. Vertical and horizontal asymmetries are related to slower sprinting and jump performance in elite youth female soccer players. J. Strength Cond. Res. 2018, 35, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Šarabon, N.; Smajla, D.; Maffiuletti, N.A.; Bishop, C. Strength, jumping and change of direction speed asymmetries in soccer, basketball and tennis players. Symmetry 2020, 12, 1664. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sport. Med. 2000, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2015. [Google Scholar] [CrossRef] [Green Version]
- Cormack, S.; Newton, R.; McGuigan, M.; Doyle, T. Reliability of measures obtained during single and repeated countermovement jumps. Int. J. Sport Physiol. Perform. 2008, 3, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallant, J. SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS; Open University Press/McGraw-Hill: Maidenhead, UK, 2016. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- LaStayo, P.; Woolf, J.; Lewek, M.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S. Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and spor. J. Orthop. Sport Phys. Ther. 2003, 33, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norrbrand, L.; Fluckey, J.D.; Pozzo, M.; Tesch, P.A. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur. J. Appl. Physiol. 2008, 102, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guerrero, J.; Moras, G.; Baeza, J.; Rodríguez-Jiménez, S. Force outputs during squats performed using a rotational inertia device under stable versus unstable conditions with different loads. PLoS ONE 2016, 11, e0154346. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.; Gerber, A.; Nimphius, S.; Shim, J.; Doan, B.; Robertson, M.; Pearson, D.; Craig, B.; Häkkinen, K.; Kraemer, W. Determination of functional strength imbalance of the lower extremities. J. Strenght Cond. Res. 2006, 20, 971–977. [Google Scholar]
- Menzel, H.-J.; Chagas, M.H.; Szmuchrowski, L.A.; Araujo, S.R.S.; de Andrade, A.G.P.; de Jesus-Moraleida, F.R. Analaysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J. Strength Cond. Res. 2013, 27, 1370–1377. [Google Scholar] [CrossRef]
- Norrmbrand, L. Acute and Early Chronic Responses to Resistance Exercise Using Flywheel or Weights. Karolisnska Institute. 2008. Available online: https://openarchive.ki.se/xmlui/handle/10616/40201 (accessed on 11 January 2021).
- Enoka, R.M. Eccentric contractions require unique activation strategies by the nervous system. J. Appl. Physiol. 1996, 81, 2339–2346. [Google Scholar] [CrossRef] [Green Version]
- Hart, L.M.; Cohen, D.D.; Patterson, S.D.; Springham, M.; Reynolds, J.; Read, P. Previous injury is associated with heightened countermovement jump force-time asymmetries in professional soccer players. Transl. Sport. Med. 2019, 2, 256–262. [Google Scholar] [CrossRef]
- Logerstedt, D.; Grindem, H.; Lynch, A.; Eitzen, I.; Engerbretsen, L.; Risberg, M.; Axe, M.; Mackler, L. Single-legged Hop test as predictors of self-reported knee function after ACL reconstruction. Am. J. Sports Med. 2012, 40, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.; Read, P.; Brazier, J.; Jarvis, P.; Chavda, S.; Bromley, T.; Turner, A. Effects of interlimb asymmetries on acceleration and change of direction speed. J. Strength Cond. Res. 2019. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
n | Age (Years) | Body Height (cm) | Body Mass (kg) | BMI (kg/m2) | Left Preferred n | Right Preferred n | |
---|---|---|---|---|---|---|---|
Female | 119 | 20.3 ± 8.4 | 170.3 ± 6.9 | 62.8 ± 9.4 | 21.6 ± 2.5 | 84 | 35 |
Male | 303 | 18.4 ± 5.3 | 181.9 ± 8.2 | 73.3 ± 11.1 | 22. 1± 2.4 | 188 | 115 |
All | 422 | 18.9 ± 6.4 | 178.6 ± 9.5 | 70.3 ± 11.7 | 21.9 ± 2.4 | 272 | 150 |
KERRYPNX | Load (kg∙m2) | Left | Right | Symmetry | ||||||
---|---|---|---|---|---|---|---|---|---|---|
M ± SD (N/kg) | CV (%) | ICC2,1 (95% CI) | M ± SD (N/kg) | CV (%) | ICC2,1 (95% CI) | M ± SD (%) | CV (%) | ICC2,1 (95% CI) | ||
Concentric | Mean force: | |||||||||
0.05 | 8.07 ± 0.91 | 8.89 | 0.92 (0.90, 0.93) | 8.03 ± 0.91 | 8.15 | 0.92 (0.90, 0.91) | 90.16 ± 3.35 | 8.20 | 0.37 (0.28, 0.36) | |
0.125 | 9.20 ± 1.11 | 8.40 | 0.93 (0.92, 0.94) | 9.23 ± 1.08 | 8.57 | 0.93 (0.91, 0.94) | 90.31 ± 3.27 | 7.97 | 0.38 (0.29, 0.47) | |
0.2 | 9.78 ± 1.24 | 8.88 | 0.95 (0.94, 0.96) | 9.76 ± 1.23 | 8.21 | 0.95 (0.94, 0.96) | 90.82 ± 2.99 | 7.80 | 0.33 (0.23, 0.41) | |
Peak force: | ||||||||||
0.05 | 11.77 ± 1.66 | 5.23 | 0.95 (0.93, 0.96) | 11.71 ± 1.64 | 7.73 | 0.95 (0.93, 0.96) | 93.37 ± 2.69 | 4.86 | 0.52 (0.44, 0.58) | |
0.125 | 13.47 ± 8.96 | 9.55 | 0.95 (0.94, 0.96) | 13.49 ± 8.89 | 8.64 | 0.94 (0.93, 0.95) | 92.70 ± 2.81 | 6.35 | 0.42 (0.33, 0.50) | |
0.2 | 12.88 ± 1.83 | 8.58 | 0.96 (0.95, 0.96) | 12.83 ± 1.81 | 8.24 | 0.96 (0.95, 0.96) | 92.59 ± 2.69 | 6.06 | 0.42 (0.33, 0.50) | |
Eccentric | Mean force: | |||||||||
0.05 | 7.68 ± 0.93 | 5.23 | 0.95 (0.93, 0.97) | 7.64 ± 0.93 | 5.68 | 0.95 (0.93, 0.96) | 91.73 ± 4.46 | 5.42 | 0.80 (0.74, 0.83) | |
0.125 | 8.96 ± 1.15 | 8.12 | 0.95 (0.93, 0.96) | 8.89 ± 1.12 | 6.64 | 0.95 (0.93, 0.96) | 92.65 ± 3.29 | 5.82 | 0.67 (0.61, 0.71) | |
0.2 | 9.62 ± 1.27 | 6.73 | 0.95 (0.94, 0.97) | 9.50 ± 1.23 | 6.72 | 0.95 (0.94, 0.96) | 92.20 ± 3.23 | 6.37 | 0.58 (0.51, 0.63) | |
Peak force: | ||||||||||
0.05 | 12.12 ± 1.86 | 9.41 | 0.93 (0.92, 0.94) | 12.07 ± 1.84 | 10.61 | 0.93 (0.92, 0.94) | 92.12 ± 3.75 | 6.48 | 0.61 (0.55, 0.66) | |
0.125 | 12.89 ± 1.86 | 7.17 | 0.94 (0.93, 0.95) | 12.81 ± 1.81 | 9.76 | 0.93 (0.92, 0.94) | 92.31 ± 3.32 | 6.86 | 0.54 (0.46, 0.60) | |
0.2 | 13.66 ± 2.08 | 7.27 | 0.94 (0.93, 0.95) | 13.51 ± 1.99 | 7.85 | 0.94 (0.93, 0.95) | 92.21 ± 3.05 | 6.73 | 0.43 (0.34, 0.51) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smajla, D.; Spudić, D.; Šarabon, N. Influence of Load and Phase of Contraction on Lateral Symmetries in Flywheel Squats. Symmetry 2021, 13, 111. https://doi.org/10.3390/sym13010111
Smajla D, Spudić D, Šarabon N. Influence of Load and Phase of Contraction on Lateral Symmetries in Flywheel Squats. Symmetry. 2021; 13(1):111. https://doi.org/10.3390/sym13010111
Chicago/Turabian StyleSmajla, Darjan, Darjan Spudić, and Nejc Šarabon. 2021. "Influence of Load and Phase of Contraction on Lateral Symmetries in Flywheel Squats" Symmetry 13, no. 1: 111. https://doi.org/10.3390/sym13010111