Antisymmetric Tensor Fields in Modified Gravity: A Summary
Abstract
1. Introduction
- In [113] an antisymmetric tensor field identified to be the Kalb–Ramond field was shown to act as the source of spacetime torsion.
- Why is the present universe practically free from the observable footprints of the higher rank antisymmetric tensor fields despite getting the signatures of scalar, fermion, vector and spin-2 massless graviton, while they all originate from the same underlying Lorentz group?
- Do the higher rank antisymmetric tensor fields have a considerable impact during early stage of the universe, in particular during inflation and on the inflationary parameters?
- Sitting in present day universe, how do we confirm the existence of the Kalb–Ramond field which has considerably low energy density (with respect to the other components) in our present universe but has a significant impact during the early universe?
2. Antisymmetric Tensor Fields in 4D Higher Curvature Gravity
2.1. Suppression of Antisymmetric Tensor Fields: A Non-Dynamical Way
2.2. A Different Non-Dynamical Method for the Suppression of Antisymmetric Tensor Fields by the “Scalaron Tunneling”
2.3. Cosmological Scenario
3. Kalb–Ramond Field in Randall–Sundrum Braneworld Scenrio
4. Cosmology with Kalb–Ramond in Higher Curvature Warped Spacetime
- Sitting in present day universe, how do we confirm the existence of the Kalb–Ramond field which has considerably low energy density (with respect to the other components) in our present universe but has a significant impact during the early universe?
5. Cosmological Quantum Entanglement with Kalb–Ramond Field
- The effects of on the entanglement entropy can be understood from the left panels of Figure 7 and Figure 8, where has the fixed value zero. The left panels clearly demonstrate that in the conformal coupling case i.e., for , the entanglement entropy vanishes for , while in the case of weak coupling (i.e., ) the entanglement entropy acquires a non-zero value even at . This is a consequence of the fact that for , the action of a massless scalar field becomes conformally invariant in four dimensional spacetime, unlike to for which the corresponding conformal invariance is broken. Moreover it is evident that the maximum value of the entanglement entropy is larger for in comparison to that of the weak coupling case.
- The effects of on the entanglement entropy can be understood from the left and right panels of Figure 7 where has a fixed value , or from the left and right panels of Figure 8 having (recall the left and right panels of the figures are plotted for and respectively). Figure 7 demonstrates that in absence of the interaction between the Kalb–Ramond and scalar field (i.e., for ), the entropy vanishes at , while a non-zero KR field coupling parameter (i.e., ) leads to a non-zero entropy even for . Again this is related to the conformal symmetry of the scalar field, in particular for , and , the scalar field becomes conformally invariant in 4 dimensional spacetime, however the condition breaks the conformal invariance of a massless scalar field even for and thus the corresponding entanglement entropy becomes non-zero. Moreover Figure 7 also depicts that without the KR field, the entanglement entropy is bounded by (in the unit of , see the left panel), while due to the presence of KR field the upper bound of entropy goes beyond and reaches up to (see the right panel). Similarly Figure 8 reveals that for , the maximum value of the von-Neumann entropy is given by in absence of the KR field, however the Kalb–Ramond field indeed affects the situation, in particular the maximum entanglement entropy reaches upto due to . Therefore the maximum value of the entanglement entropy becomes larger due to the coupling between Kalb–Ramond and scalar field, in comparison to the case when the coupling parameter is zero.
6. Conclusions
- Why the present universe is practically free from any noticeable footmarks of higher rank antisymmetric tensor fields, despite having the signatures of scalar, vector, fermion as well as symmetric rank 2 tensor field in the form of gravity?
- What are the possible roles of the Kalb–Ramond field during early universe?
- If the Kalb–Ramond field has considerable impact during early universe, then an immediate question will be—sitting in present day universe, how do we confirm the existence of the Kalb–Ramond field which has considerably low energy density (with respect to the other components) in our present universe but has a significant impact during early universe?
7. Brief Discussions on Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. 1982, 108B, 389. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P.J. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Kinney, W.H. Cosmology, inflation, and the physics of nothing. NATO Sci. Ser. II 2003, 123, 189–243. [Google Scholar] [CrossRef]
- Langlois, D. Inflation, quantum fluctuations and cosmological perturbations. arXiv 2005, arXiv:0405053. [Google Scholar]
- Riotto, A. Inflation and the theory of cosmological perturbations. ICTP Lect. Notes Ser. 2003, 14, 317–413. [Google Scholar]
- Barrow, J.D.; Saich, P. Scalar field cosmologies. Class. Quant. Grav. 1993, 10, 279–283. [Google Scholar] [CrossRef]
- Barrow, J.D.; Mimoso, J.P. Perfect fluid scalar-tensor cosmologies. Phys. Rev. D 1994, 50, 3746–3754. [Google Scholar] [CrossRef]
- Mimoso, J.P.; Wands, D. Massless fields in scalar-tensor cosmologies. Phys. Rev. D 1995, 51, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Baumann, D. Inflation. Phys. Large Small 2011. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests. Phys. Lett. B 2007, 657, 238–245. [Google Scholar] [CrossRef]
- Sriramkumar, L. An introduction to inflation and cosmological perturbation theory. arXiv 2009, arXiv:0904.4584. [Google Scholar]
- Langlois, D. Lectures on inflation and cosmological perturbations. Lect. Notes Phys. 2010, 800, 1–57. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Inflation and the theory of cosmological perturbations. arXiv 2002, arXiv:9711106. [Google Scholar]
- Wang, Y. Inflation, Cosmic Perturbations and Non-Gaussianities. Commun. Theor. Phys. 2014, 62, 109–166. [Google Scholar] [CrossRef]
- Brandenberger, R.H. The Matter Bounce Alternative to Inflationary Cosmology. arXiv 2012, arXiv:1206.4196. [Google Scholar]
- Brandenberger, R.; Peter, P. Bouncing Cosmologies: Progress and Problems. arXiv 2017, arXiv:1603.05834. [Google Scholar] [CrossRef]
- Battefeld, D.; Peter, P. A Critical Review of Classical Bouncing Cosmologies. Phys. Rept. 2015, 571, 1. [Google Scholar] [CrossRef]
- Novello, M.; Bergliaffa, S.E.P. Bouncing Cosmologies. Phys. Rept. 2008, 463, 127. [Google Scholar] [CrossRef]
- Cai, Y.F. Exploring Bouncing Cosmologies with Cosmological Surveys. Sci. China Phys. Mech. Astron. 2014, 57, 1414. [Google Scholar] [CrossRef]
- Ijjas, A.; Steinhardt, P.J. Bouncing Cosmology made simple. Class. Quant. Grav. 2018, 35, 135004. [Google Scholar] [CrossRef]
- Cai, Y.F.; Brandenberger, R.; Peter, P. Anisotropy in a Nonsingular Bounce. Class. Quant. Grav. 2013, 30, 075019. [Google Scholar] [CrossRef]
- Battefeld, T.J.; Patil, S.P.; Brandenberger, R. Non-singular perturbations in a bouncing brane model. Phys. Rev. D 2004, 70, 066006. [Google Scholar] [CrossRef]
- Peter, P.; Vitenti, S.D.P. The simplest possible bouncing quantum cosmological model. Mod. Phys. Lett. A 2016, 31, 1640006. [Google Scholar] [CrossRef]
- Cai, Y.F.; Easson, D.A.; Brandenberger, R. Towards a Nonsingular Bouncing Cosmology. JCAP 2012. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Bouncing cosmology with future singularity from modified gravity. Phys. Rev. D 2015, 92, 024016. [Google Scholar] [CrossRef]
- Cai, Y.; Wan, Y.; Li, H.G.; Qiu, T.; Piao, Y.S. The Effective Field Theory of nonsingular cosmology. JHEP 2017, 1, 90. [Google Scholar] [CrossRef]
- Cai, Y.; Li, H.G.; Qiu, T.; Piao, Y.S. The Effective Field Theory of nonsingular cosmology: II. Eur. Phys. J. C 2017, 77, 369. [Google Scholar] [CrossRef]
- Qiu, T.; Yang, K.C. Perturbations in Matter Bounce with Non-minimal Coupling. JCAP 2010, 11, 012. [Google Scholar] [CrossRef][Green Version]
- Koehn, M.; Lehners, J.L.; Ovrut, B. Nonsingular bouncing cosmology: Consistency of the effective description. Phys. Rev. D 2016, 93, 103501. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept. 2011, 505, 59. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept. 2017, 692, 1. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rept. 2011, 509, 167. [Google Scholar] [CrossRef]
- Csaki, C. TASI lectures on extra dimensions and branes. arXiv 2004, arXiv:0404096. [Google Scholar]
- Csaki, C.; Hubisz, J.; Meade, P. TASI lectures on electroweak symmetry breaking from extra dimensions. arXiv 2005, arXiv:0510275. [Google Scholar]
- Brax, P.; van de Bruck, C. Cosmology and brane worlds: A Review. Class. Quant. Grav. 2003, 20, R201–R232. [Google Scholar] [CrossRef]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Relativ. 2010, 13, 5. [Google Scholar] [CrossRef]
- Whisker, R. Braneworld Black Holes. arXiv 2005, arXiv:0810.1534. [Google Scholar]
- Brax, P.; van de Bruck, C.; Davis, A.C. Brane world cosmology. Rept. Prog. Phys. 2004, 67, 2183–2232. [Google Scholar] [CrossRef]
- Kim, Y.B.; Lee, C.O.; Lee, I.B.; Lee, J.J. Brane world of warp geometry: An Introductory review. J. Korean Astron. Soc. 2004, 37, 1–14. [Google Scholar] [CrossRef]
- Artymowski, M.; Lalak, Z. Inflation and dark energy from f(R) gravity. JCAP 2014, 9, 036. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. f(R) Gravity Inflation with String-Corrected Axion Dark Matter. Phys. Rev. D 2019, 99, 064049. [Google Scholar] [CrossRef]
- Johnson, J.P.; Shankaranarayanan, S. Low-energy modified gravity signatures on the large-scale structures. Phys. Rev. D 2019, 100, 083526. [Google Scholar] [CrossRef]
- Pinto, P.; del Vecchio, L.; Fatibene, L.; Ferraris, M. Extended cosmology in Palatini f(R)-theories. JCAP 2018, 11, 044. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Unification of Inflation with Dark Energy in f(R) Gravity and Axion Dark Matter. Phys. Rev. D 2019, 99, 104070. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. F(R) Gravity with an Axion-like Particle: Dynamics, Gravity Waves, Late and Early-time Phenomenology. arXiv 2020, arXiv:1907.01625. [Google Scholar]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Unifying Inflation with Early and Late-time Dark Energy in F(R) Gravity. arXiv 2020, arXiv:1912.13128. [Google Scholar]
- Lobo, F.S. The Dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar]
- Gorbunov, D.; Panin, A. Scalaron the mighty: Producing dark matter and baryon asymmetry at reheating. Phys. Lett. B 2011, 700, 157–162. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J.D. The Cosmology of f(R) gravity in metric variational approach. Phys. Rev. D 2007, 75, 084010. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Geometric Inflation and Dark Energy with Axion F(R) Gravity. Phys. Rev. D 2020, 101, 044009. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Aspects of Axion F(R) Gravity. EPL 2020, 129, 40001. [Google Scholar] [CrossRef]
- Appleby, S.A.; Battye, R.A. Do consistent F(R) models mimic General Relativity plus Λ? Phys. Lett. B 2007, 654, 7–12. [Google Scholar] [CrossRef]
- Elizalde, E.; Nojiri, S.; Odintsov, S.; Sebastiani, L.; Zerbini, S. Non-singular exponential gravity: A simple theory for early- and late-time accelerated expansion. Phys. Rev. D 2011, 83, 086006. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.; Sebastiani, L.; Zerbini, S. A Class of viable modified f(R) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 2008, 77, 046009. [Google Scholar] [CrossRef]
- Li, B.; Barrow, J.D.; Mota, D.F. The Cosmology of Modified Gauss-Bonnet Gravity. Phys. Rev. D 2007, 76, 044027. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Banerjee, S. Dynamics of inflation and dark energy from F(R, G) gravity. Nucl. Phys. B 2019, 938, 935. [Google Scholar] [CrossRef]
- Carter, B.M.; Neupane, I.P. Towards inflation and dark energy cosmologies from modified Gauss-Bonnet theory. JCAP 2006, 06, 004. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.; Oikonomou, V.; Chatzarakis, N.; Paul, T. Viable inflationary models in a ghost-free Gauss–Bonnet theory of gravity. Eur. Phys. J. C 2019, 79, 565. [Google Scholar] [CrossRef]
- Elizalde, E.; Myrzakulov, R.; Obukhov, V.; Saez-Gomez, D. LambdaCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quant. Grav. 2010, 27, 095007. [Google Scholar] [CrossRef]
- Makarenko, A.N. The role of Lagrange multiplier in Gauss–Bonnet dark energy. Int. J. Geom. Methods Mod. Phys. 2016, 13, 1630006. [Google Scholar] [CrossRef]
- de la Cruz-Dombriz, A.; Saez-Gomez, D. On the stability of the cosmological solutions in f(R, G) gravity. Class. Quant. Grav. 2012, 29, 245014. [Google Scholar] [CrossRef]
- Chakraborty, S.; Paul, T.; SenGupta, S. Inflation driven by Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2018, 98, 083539. [Google Scholar] [CrossRef]
- Kanti, P.; Gannouji, R.; Dadhich, N. Gauss-Bonnet Inflation. Phys. Rev. D 2015, 92, 041302. [Google Scholar] [CrossRef]
- Kanti, P.; Gannouji, R.; Dadhich, N. Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory. Phys. Rev. D 2015, 92, 083524. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Viable Inflation in Scalar-Gauss-Bonnet Gravity and Reconstruction from Observational Indices. Phys. Rev. D 2018, 98, 044039. [Google Scholar] [CrossRef]
- Saridakis, E.N. Ricci-Gauss-Bonnet holographic dark energy. Phys. Rev. D 2018, 97, 064035. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem. Phys. Rev. D 2006, 73, 084007. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Odintsov, S.D. Bouncing cosmology in modified Gauss-Bonnet gravity. Phys. Lett. B 2014, 732, 349–355. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Odintsov, S.D. Bounce universe from string-inspired Gauss-Bonnet gravity. JCAP 2015, 4, 1. [Google Scholar] [CrossRef]
- Amorós, J.; de Haro, J.; Odintsov, S.D. R+αR2 Loop Quantum Cosmology. Phys. Rev. D 2014, 89, 104010. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Bounce universe history from unimodular F(R) gravity. Phys. Rev. D 2016, 93, 084050. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Big-Bounce with Finite-time Singularity: The F(R) Gravity Description. Int. J. Mod. Phys. D 2017, 26, 1750085. [Google Scholar] [CrossRef]
- Bamba, K.; Makarenko, A.N.; Myagky, A.N.; Nojiri, S.; Odintsov, S.D. Bounce cosmology from F(R) gravity and F(R) bigravity. JCAP 2014, 1, 8. [Google Scholar] [CrossRef]
- Haro, J.; Makarenko, A.N.; Myagky, A.N.; Odintsov, S.D.; Oikonomou, V.K. Bouncing loop quantum cosmology in Gauss-Bonnet gravity. Phys. Rev. D 2015, 92, 124026. [Google Scholar] [CrossRef]
- Helling, R.C. Higher curvature counter terms cause the bounce in loop cosmology. arXiv 2009, arXiv:0912.3011. [Google Scholar]
- Elizalde, E.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Extended matter bounce scenario in ghost free f(R, ) gravity compatible with GW170817. Nucl. Phys. B 2020, 954, 114984. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263–272. [Google Scholar] [CrossRef]
- Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 1998, 436, 257–263. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 1999, 59, 086004. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Kaloper, N.; March-Russell, J. Rapid asymmetric inflation and early cosmology in theories with submillimeter dimensions. Nucl. Phys. B 2000, 567, 189–228. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Wise, M.B. Modulus stabilization with bulk fields. Phys. Rev. Lett. 1999, 83, 4922–4925. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Wise, M.B. Phenomenology of a stabilized modulus. Phys. Lett. B 2000, 475, 275–279. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Gravity stabilizes itself. Eur. Phys. J. C 2017, 77, 573. [Google Scholar] [CrossRef]
- Das, A.; Mukherjee, H.; Paul, T.; SenGupta, S. Radion stabilization in higher curvature warped spacetime. Eur. Phys. J. C 2018, 78, 108. [Google Scholar] [CrossRef]
- Csaki, C.; Graesser, M.L.; Kribs, G.D. Radion dynamics and electroweak physics. Phys. Rev. D 2001, 63, 065002. [Google Scholar] [CrossRef]
- DeWolfe, O.; Freedman, D.Z.; Gubser, S.S.; Karch, A. Modeling the fifth-dimension with scalars and gravity. Phys. Rev. D 2000, 62, 046008. [Google Scholar] [CrossRef]
- Lesgourgues, J.; Pastor, S.; Peloso, M.; Sorbo, L. Cosmology of the Randall-Sundrum model after dilaton stabilization. Phys. Lett. B 2000, 489, 411. [Google Scholar] [CrossRef]
- Csaki, C.; Graesser, M.; Randall, L.; Terning, J. Cosmology of brane models with radion stabilization. Phys. Rev. D 2000, 62, 045015. [Google Scholar] [CrossRef]
- Binetruy, P.; Deffayet, C.; Langlois, D. Nonconventional cosmology from a brane universe. Nucl. Phys. B 2000, 565, 269–287. [Google Scholar] [CrossRef]
- Csaki, C.; Graesser, M.; Kolda, C.F.; Terning, J. Cosmology of one extra dimension with localized gravity. Phys. Lett. B 1999, 462, 34–40. [Google Scholar] [CrossRef]
- Cline, J.M. Cosmological expansion in the Randall-Sundrum warped compactification. arXiv 2009, arXiv:0001285. [Google Scholar]
- Nojiri, S.; Odintsov, S.D. Brane world cosmology in higher derivative gravity or warped compactification in the next-to-leading order of AdS/CFT correspondence. JHEP 2000, 7, 49. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Ogushi, S. Cosmological and black hole brane world universes in higher derivative gravity. Phys. Rev. D 2002, 65, 023521. [Google Scholar] [CrossRef]
- Das, A.; Maity, D.; Paul, T.; SenGupta, S. Bouncing cosmology from warped extra dimensional scenario. Eur. Phys. J. C 2017, 77, 813. [Google Scholar] [CrossRef]
- Banerjee, N.; Paul, T. Inflationary scenario from higher curvature warped spacetime. Eur. Phys. J. C 2017, 77, 672. [Google Scholar] [CrossRef]
- Davoudiasl, H.; Hewett, J.L.; Rizzo, T.G. Phenomenology of the Randall-Sundrum Gauge Hierarchy Model. Phys. Rev. Lett. 2000, 84, 2080. [Google Scholar] [CrossRef]
- Das, A.; SenGupta, S. Lightest Kaluza–Klein graviton mode in a back-reacted Randall–Sundrum scenario. Eur. Phys. J. C 2016, 76, 423. [Google Scholar] [CrossRef]
- Tang, Y. Implications of LHC Searches for Massive Graviton. JHEP 2012, 8, 78. [Google Scholar] [CrossRef]
- Arun, M.T.; Choudhury, D.; Das, A.; SenGupta, S. Graviton modes in multiply warped geometry. Phys. Lett. B 2015, 746, 266–275. [Google Scholar] [CrossRef][Green Version]
- Das, A.; SenGupta, S. 126 GeV Higgs and ATLAS bound on the lightest graviton mass in Randall-Sundrum model. arXiv 2013, arXiv:1303.2512. [Google Scholar]
- Banerjee, I.; Chakraborty, S.; SenGupta, S. Radion induced inflation on nonflat brane and modulus stabilization. Phys. Rev. D 2019, 99, 023515. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sengupta, S. Radion cosmology and stabilization. Eur. Phys. J. C 2014, 74, 3045. [Google Scholar] [CrossRef][Green Version]
- Das, S.; Maity, D.; SenGupta, S. Cosmological constant, brane tension and large hierarchy in a generalized Randall-Sundrum braneworld scenario. JHEP 2008, 5, 42. [Google Scholar] [CrossRef][Green Version]
- Banerjee, I.; SenGupta, S. Modulus stabilization in a non-flat warped braneworld scenario. Eur. Phys. J. C 2017, 77, 277. [Google Scholar] [CrossRef]
- Paul, T.; Sengupta, S. Graviton Kaluza-Klein modes in nonflat branes with stabilized modulus. Phys. Rev. D 2016, 93, 085035. [Google Scholar] [CrossRef]
- Kalb, M.; Ramond, P. Classical direct interstring action. Phys. Rev. D 1974, 9, 2273–2284. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Martinec, E.J.; Perry, M.J.; Friedan, D. Strings in Background Fields. Nucl. Phys. B 1985, 262, 593–609. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Kirillova, E.N.; Pletnev, N.G. Quantum Equivalence of Massive Antisymmetric Tensor Field Models in Curved Space. Phys. Rev. D 2008, 78, 084024. [Google Scholar] [CrossRef]
- Majumdar, P.; SenGupta, S. Parity violating gravitational coupling of electromagnetic fields. Class. Quant. Grav. 1999, 16, L89–L94. [Google Scholar] [CrossRef]
- Mukhopadhyaya, B.; Sen, S.; SenGupta, S. Does a Randall-Sundrum scenario create the illusion of a torsion free universe? Phys. Rev. Lett. 2002, 89, 121101. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyaya, B.; Sen, S.; SenGupta, S. Bulk antisymmetric tensor fields in a Randall-Sundrum model. Phys. Rev. D 2007, 76, 121501. [Google Scholar] [CrossRef]
- Das, A.; Mukhopadhyaya, B.; SenGupta, S. Why has spacetime torsion such negligible effect on the Universe? Phys. Rev. D 2014, 90, 107901. [Google Scholar] [CrossRef]
- Das, A.; SenGupta, S. Antisymmetric tensor fields in a generalized Randall-Sundrum scenario. Phys. Lett. B 2011, 698, 311–318. [Google Scholar] [CrossRef][Green Version]
- di Grezia, E.; Esposito, S. Minimal coupling of the Kalb-Ramond field to a scalar field. Int. J. Theor. Phys. 2004, 43, 445–456. [Google Scholar] [CrossRef]
- Chakraborty, S.; SenGupta, S. Solutions on a brane in a bulk spacetime with Kalb-Ramond field. Ann. Phys. 2016, 367, 258–279. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Paul, T.; Gómez, D.S. Inflationary universe in F(R) gravity with antisymmetric tensor fields and their suppression during its evolution. Phys. Rev. D 2019, 99, 63506. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Logarithmic-corrected R2 Gravity Inflation in the Presence of Kalb-Ramond Fields. JCAP 2019, 2, 17. [Google Scholar] [CrossRef]
- Das, A.; Paul, T.; Sengupta, S. Invisibility of antisymmetric tensor fields in the light of F(R) gravity. Phys. Rev. D 2018, 98, 104002. [Google Scholar] [CrossRef]
- Paul, T.; SenGupta, S. Scalaron tunneling and the fate of antisymmetric tensor fields in F(R) gravity. arXiv 2018, arXiv:1811.05778. [Google Scholar]
- Aashish, S.; Padhy, A.; Panda, S. Gravitational waves from inflation with antisymmetric tensor field. arXiv 2005, arXiv:2005.14673. [Google Scholar]
- Aashish, S.; Panda, S. Quantum aspects of antisymmetric tensor field with spontaneous Lorentz violation. Phys. Rev. D 2019, 100, 65010. [Google Scholar] [CrossRef]
- Aashish, S.; Padhy, A.; Panda, S. Avoiding instabilities in antisymmetric tensor field driven inflation. Eur. Phys. J. C 2019, 79, 784. [Google Scholar] [CrossRef]
- Aashish, S.; Padhy, A.; Panda, S.; Rana, A. Inflation with an antisymmetric tensor field. Eur. Phys. J. C 2018, 78, 887. [Google Scholar] [CrossRef]
- Aashish, S.; Panda, S. On the quantum equivalence of an antisymmetric tensor field with spontaneous Lorentz violation. Mod. Phys. Lett. A 2020, 33, 2050087. [Google Scholar] [CrossRef]
- Aashish, S.; Panda, S. Covariant effective action for an antisymmetric tensor field. Phys. Rev. D 2018, 97, 125005. [Google Scholar] [CrossRef]
- Do, T.Q.; Kao, W.F. Five-dimensional scalar-vector Kalb-Ramond black holes. Phys. Rev. D 2020, 101, 044014. [Google Scholar] [CrossRef]
- Do, T.Q.; Kao, W.F. Anisotropic power-law inflation of the five dimensional scalar–vector and scalar-Kalb–Ramond model. Eur. Phys. J. C 2018, 78, 531. [Google Scholar] [CrossRef]
- De Risi, G. Bouncing cosmology from Kalb-Ramond braneworld. Phys. Rev. D 2008, 77, 044030. [Google Scholar] [CrossRef]
- De Risi, G. Non-singular Brane cosmology with a Kalb-Ramond field. arXiv 2008, arXiv:0805.1685. [Google Scholar]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General Relativity with Spin and Torsion: Foundations and Prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef]
- de Sabbata, V.; Sivaram, C. Spin and Torsion in Gravitation; World Scientific: Singapore, 1994; 313p. [Google Scholar] [CrossRef]
- Kofinas, G.; Saridakis, E.N. Teleparallel equivalent of Gauss-Bonnet gravity and its modifications. Phys. Rev. D 2014, 90, 084044. [Google Scholar] [CrossRef]
- Kofinas, G.; Saridakis, E.N. Cosmological applications of F(T, TG) gravity. Phys. Rev. D 2014, 90, 084045. [Google Scholar] [CrossRef]
- Howe, P.S.; Opfermann, A.; Papadopoulos, G. Twistor spaces for QKT manifolds. Commun. Math. Phys. 1998, 197, 713–727. [Google Scholar] [CrossRef]
- Howe, P.S.; Papadopoulos, G. Twistor spaces for HKT manifolds. Phys. Lett. B 1996, 379, 80–86. [Google Scholar] [CrossRef]
- Kubyshin, Y.A.; Malyshenko, V.O.; Ricoy, D.M. Invariant connections with torsion on group manifolds and their application in Kaluza-Klein theories. J. Math. Phys. 1994, 35, 310–320. [Google Scholar] [CrossRef]
- German, G.; Macias, A.; Obregon, O. Kaluza-Klein approach in higher dimensional theories of gravity with torsion. Class. Quant. Grav. 1993, 10, 1045–1053. [Google Scholar] [CrossRef]
- Kar, S.; Majumdar, P.; SenGupta, S.; Sinha, A. Does a Kalb-Ramond field make space-time optically active? Eur. Phys. J. C 2002, 23, 357–361. [Google Scholar] [CrossRef][Green Version]
- Kar, S.; Majumdar, P.; SenGupta, S.; Sur, S. Cosmic optical activity from an inhomogeneous Kalb-Ramond field. Class. Quant. Grav. 2002, 19, 677–688. [Google Scholar] [CrossRef]
- Paul, T.; Banerjee, N. Cosmological quantum entanglement: A possible testbed for the existence of Kalb-Ramond field. Class. Quant. Grav. 2020, 37, 135013. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Gómez, D.S.; Sharov, G.S. Is exponential gravity a viable description for the whole cosmological history? Eur. Phys. J. C 2017, 77, 862. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Sebastiani, L. Unification of Constant-roll Inflation and Dark Energy with Logarithmic R2-corrected and Exponential F(R) Gravity. Nucl. Phys. B 2017, 923, 608–632. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. X. Constraints on inflation. arXiv 2020, arXiv:1807.06211. [Google Scholar]
- Hwang, J.C.; Noh, H. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyon: Unified analyses. Phys. Rev. D 2005, 71, 063536. [Google Scholar] [CrossRef]
- Noh, H.; Hwang, J.C. Inflationary spectra in generalized gravity: Unified forms. Phys. Lett. B 2001, 515, 231. [Google Scholar] [CrossRef]
- Hwang, J.C.; Noh, H. Cosmological perturbations in a generalized gravity including tachyonic condensation. Phys. Rev. D 2002, 66, 084009. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P. Rectifying Einstein-Gauss-Bonnet Inflation in View of GW170817. arXiv 2003, arXiv:2003.13724. [Google Scholar]
- Paul, T. Holographic correspondence of F(R) gravity with/without matter fields. EPL 2019, 127, 20004. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Saridakis, E.N. Holographic inflation. Phys. Lett. B 2019, 797, 134829. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Paul, T. Unifying Holographic Inflation with Holographic Dark Energy: A Covariant Approach. arXiv 2007, arXiv:2007.06829. [Google Scholar]
- Planck. Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, T. Antisymmetric Tensor Fields in Modified Gravity: A Summary. Symmetry 2020, 12, 1573. https://doi.org/10.3390/sym12091573
Paul T. Antisymmetric Tensor Fields in Modified Gravity: A Summary. Symmetry. 2020; 12(9):1573. https://doi.org/10.3390/sym12091573
Chicago/Turabian StylePaul, Tanmoy. 2020. "Antisymmetric Tensor Fields in Modified Gravity: A Summary" Symmetry 12, no. 9: 1573. https://doi.org/10.3390/sym12091573
APA StylePaul, T. (2020). Antisymmetric Tensor Fields in Modified Gravity: A Summary. Symmetry, 12(9), 1573. https://doi.org/10.3390/sym12091573