Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function
Abstract
:1. Introduction
2. Auxiliary Results
- (i)
- Let be an integrable function and symmetric with respect to ; then we have
- (ii)
- Let be an integrable and symmetric function with respect to ; then we have for :
- (i)
- Let . It is clear that for each and then . Then, by using the assumptions and Definition 1, we get (10).
- (ii)
- By using the symmetric property of w, we have
- (i)
- , then inequality (12) becomes
- (ii)
- (iii)
- (iv)
3. Main Results
- (i)
- , we getwhereand
- (ii)
- and , we get
- (iii)
- and , we obtain
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohammed, P.O.; Brevik, I. A New Version of the Hermite–Hadamard Inequality for Riemann-Liouville Fractional Integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Vivas-Cortez, M.; Abdeljawad, T.; Mohammed, P.O.; Rangel-Oliveros, Y. Simpson’s Integral Inequalities for Twice Differentiable Convex Functions. Math. Probl. Eng. 2020, 2020, 1936461. [Google Scholar] [CrossRef]
- Kaijser, S.; Nikolova, L.; Persson, L.-E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, H. Eridani, Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef]
- Sawano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, 2020, 148. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Bilisik, C.C.; Mohammed, P.O. Some generalizations of Opial type inequalities. Appl. Math. Inf. Sci. 2020, 14, 809–816. [Google Scholar]
- Zhao, C.-J.; Cheung, W.-S. On improvements of the Rozanova’s inequality. J. Inequal. Appl. 2011, 2020, 33. [Google Scholar] [CrossRef] [Green Version]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Sci. B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Bardaro, C.; Butzer, P.L.; Mantellini, I. The foundations of fractional calculus in the Mellin transform setting with applications. J. Fourier Anal. Appl. 2015, 21, 961–1017. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Ji, A.-P.; Qi, F. On Integral Inequalities of Hermite-Hadamard Type for s-Geometrically Convex Functions. Abstr. Appl. Anal. 2012, 2012, 560586. [Google Scholar] [CrossRef]
- Zhang, T.-Y.; Ji, A.-P.; Qi, F. Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means. Le Mat. 2013, 68, 229–239. [Google Scholar]
- Mohammed, P.O. Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates. J. King Saud Univ. Sci. 2018, 30, 258–262. [Google Scholar] [CrossRef]
- Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 31–43. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs; Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Mohammed, P.O.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 2018, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baleanu, D.; Mohammed, P.O.; Zeng, S. Inequalities of trapezoidal type involving generalized fractional integrals. Alex. Eng. J. 2020. [Google Scholar] [CrossRef]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Qi, F.; Mohammed, P.O.; Yao, J.C.; Yao, Y.H. Generalized fractional integral inequalities of Hermite–Hadamard type for (α,m)-convex functions. J. Inequal. Appl. 2019, 2019, 135. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Baleanu, D.; Mohammed, P.O.; Vivas-Cortez, M.; Rangel-Oliveros, Y. Some modifications in conformable fractional integral inequalities. Adv. Differ. Equ. 2020, 2020, 374. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New Modified Conformable Fractional Integral Inequalities of Hermite-Hadamard Type with Applications. J. Funct. Space 2020, 2020, 4352357. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z. On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 2020, 372, 112740. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 2020, 363. [Google Scholar] [CrossRef]
- Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. 2019, 1–11. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the Generalized Hermite-Hadamard Inequalities via the Tempered Fractional Integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Mohammed, P. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. 2020, 1–18. [Google Scholar] [CrossRef]
- Macdonald, I.G. Symmetric Functions and Orthogonal Polynomials; Providence, RI; American Mathematical Soc.: New York, NY, USA, 1997. [Google Scholar]
- Fejér, L. Uberdie Fourierreihen, II, Math. Naturwise Anz Ung. Akad. Wiss. 1906, 24, 369–390. [Google Scholar]
- Işcan, İ. Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Shah, K. On the Weighted Fractional operators of a function with respect to another function. Fractals 2020. [Google Scholar] [CrossRef]
- Osler, T.J. The Fractional Derivative of a Composite Function. SIAM J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kunt, M.; Işcan, İ. On new Hermite-Hadamard-Fejer type inequalities for p-convex functions via fractional integrals. CMMA 2017, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Delavar, M.R.; Aslani, M.; De La Sen, M. Hermite-Hadamard-Fejér Inequality Related to Generalized Convex Functions via Fractional Integrals. ScienceAsia 2018, 2018, 5864091. [Google Scholar]
- Mehmood, S.; Zafar, F.; Asmin, N. New Hermite-Hadamard-Fejér type inequalities for (η1,η2)-convex functions via fractional calculus. ScienceAsia 2020, 46, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Yaldiz, H. On generalization integral inequalities for fractional integrals. Nihonkai Math. J. 2014, 25, 93–104. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function. Symmetry 2020, 12, 1503. https://doi.org/10.3390/sym12091503
Mohammed PO, Abdeljawad T, Kashuri A. Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function. Symmetry. 2020; 12(9):1503. https://doi.org/10.3390/sym12091503
Chicago/Turabian StyleMohammed, Pshtiwan Othman, Thabet Abdeljawad, and Artion Kashuri. 2020. "Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function" Symmetry 12, no. 9: 1503. https://doi.org/10.3390/sym12091503
APA StyleMohammed, P. O., Abdeljawad, T., & Kashuri, A. (2020). Fractional Hermite–Hadamard–Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function. Symmetry, 12(9), 1503. https://doi.org/10.3390/sym12091503