Nucleon Polarizabilities and Compton Scattering as Playground for Chiral Perturbation Theory
Abstract
:1. Introduction
2. Baryon Chiral Perturbation Theory
2.1. BPT with Pions and Nucleons
2.2. Inclusion of the and Power Counting
- low-energy region: ;
- resonance region: .
2.3. Low-Energy Constants and Predictive Orders
2.4. Heavy-Baryon Expansion
3. Compton Scattering Formalism
- Real Compton scattering (RCS): ;
- Virtual Compton scattering (VCS): and ;
- Forward doubly-virtual Compton scattering (VVCS): (thus ) and .
4. Nucleon Polarizabilities
5. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BPT | Baryon chiral perturbation theory |
PT | Chiral perturbation theory |
CS | Compton scattering |
EFT | Effective-field theory |
HBPT | Heavy-baryon chiral perturbation theory |
LEC | Low-energy constant |
PWA | Partial-wave analysis |
RCS | Real Compton scattering |
VCS | Virtual Compton scattering |
VVCS | Forward doubly-virtual Compton scattering |
References
- Pagels, H. Departures from Chiral Symmetry: A Review. Phys. Rept. 1975, 16, 219. [Google Scholar] [CrossRef]
- Weinberg, S. Phenomenological Lagrangians. Physica A 1979, 96, 327. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142. [Google Scholar] [CrossRef] [Green Version]
- Gasser, J.; Sainio, M.E.; Švarc, A. Nucleons with Chiral Loops. Nucl. Phys. B 1988, 307, 779. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Meißner, U.G. Chiral expansion of the nucleon’s electromagnetic polarizabilities. Phys. Rev. Lett. 1991, 67, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Bernard, V.; Kaiser, N.; Meißner, U.G. Nucleons with chiral loops: Electromagnetic polarizabilities. Nucl. Phys. B 1992, 373, 346–370. [Google Scholar] [CrossRef]
- Baldin, A.M. Polarizability of Nucleons. Nucl. Phys. 1960, 18, 310–317. [Google Scholar] [CrossRef]
- Lapidus, L.I. Scattering of Gamma Quanta and Polarizability of Nuclei and Nucleons. Zh. Eksp. Teor. Fiz. 1962, 43, 1358, [Sov. Phys. JETP 16, 964 (1963)]. [Google Scholar]
- Pascalutsa, V. Causality Rules; IOP Concise Physics, IOP Publishing and Morgan & Claypool Publishers: Bristol, UK, 2018. [Google Scholar]
- Damashek, M.; Gilman, F.J. Forward Compton Scattering. Phys. Rev. D 1970, 1, 1319–1332. [Google Scholar] [CrossRef]
- Schröder, U. Calculation of the Electric Polarizabilities of Proton and Neutron. Nucl. Phys. B 1980, 166, 103. [Google Scholar] [CrossRef]
- Babusci, D.; Giordano, G.; Matone, G. A New evaluation of the Baldin sum rule. Phys. Rev. C 1998, 57, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Levchuk, M.I.; L’vov, A.I. Deuteron Compton scattering below pion photoproduction threshold. Nucl. Phys. A 2000, 674, 449–492. [Google Scholar] [CrossRef] [Green Version]
- Olmos de León, V.; Wissmann, F.; Achenbach, P.; Ahrens, J.; Arends, H.J.; Beck, R.; Harty, P.D.; Hejny, V.; Jennewein, P.; Kotulla, M.; et al. Low-energy Compton scattering and the polarizabilities of the proton. Eur. Phys. J. A 2001, 10, 207–215. [Google Scholar] [CrossRef]
- Gryniuk, O.; Hagelstein, F.; Pascalutsa, V. Evaluation of the forward Compton scattering off protons: Spin-independent amplitude. Phys. Rev. D 2015, 92, 074031. [Google Scholar] [CrossRef] [Green Version]
- Pohl, R.; Antognini, A.; Nez, F.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.; Covita, D.S.; Dax, A.; Dhawan, S.; Fernandes, L.M.; et al. The size of the proton. Nature 2010, 466, 213–216. [Google Scholar] [CrossRef]
- Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.; Covita, D.S.; Dax, A.; Dhawan, S.; Diepold, M.; et al. Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen. Science 2013, 339, 417–420. [Google Scholar] [CrossRef]
- Pohl, R.; Nez, F.; Fernandes, L.M.; Ahmed, M.A.; Amaro, F.D.; Amaro, P.; Biraben, F.; Cardoso, J.M.; Covita, D.S.; Dax, A.; et al. Laser Spectroscopy of Muonic Atoms and Ions. JPS Conf. Proc. 2017, 18, 011021. [Google Scholar]
- Bakalov, D.; Adamczak, A.; Stoilov, M.; Vacchi, A. Toward the measurement of the hyperfine splitting in the ground state of muonic hydrogen. Hyperfine Interact. 2015, 233, 97–101. [Google Scholar] [CrossRef]
- Kanda, S.; Ishida, K.; Iwasaki, M.; Ma, Y.; Okada, S.; Takamine, A.; Ueno, H.; Midorikawa, K.; Saito, N.; Wada, S.; et al. Measurement of the proton Zemach radius from the hyperfine splitting in muonic hydrogen atom. J. Phys. Conf. Ser. 2018, 1138, 012009. [Google Scholar] [CrossRef]
- Alarcón, J.M.; Lensky, V.; Pascalutsa, V. Chiral perturbation theory of muonic hydrogen Lamb shift: Polarizability contribution. Eur. Phys. J. C 2014, 74, 2852. [Google Scholar] [CrossRef]
- Hagelstein, F.; Pascalutsa, V. Proton structure in the hyperfine splitting of muonic hydrogen. PoS 2016, CD15, 077. [Google Scholar]
- Hagelstein, F. Exciting Nucleons in Compton Scattering and Hydrogen-Like Atoms. Ph.D. Thesis, Institut für Kernphysik, Johannes Gutenberg University of Mainz, Mainz, Germany, 2017. [Google Scholar]
- Hagelstein, F.; Miskimen, R.; Pascalutsa, V. Nucleon Polarizabilities: From Compton Scattering to Hydrogen Atom. Prog. Part. Nucl. Phys. 2016, 88, 29–97. [Google Scholar] [CrossRef] [Green Version]
- Lensky, V.; Pascalutsa, V. Polarisabilities of the nucleon in baryon chiral perturbation theory and beyond. PoS 2019, CD2018, 035. [Google Scholar]
- Guichon, P.A.M.; Vanderhaeghen, M. Virtual Compton scattering off the nucleon. Prog. Part. Nucl. Phys. 1998, 41, 125–190. [Google Scholar] [CrossRef] [Green Version]
- Fonvieille, H.; Pasquini, B.; Sparveris, N. Virtual Compton scattering and nucleon generalized polarizabilities. Prog. Part. Nucl. Phys. 2020, 113, 103754. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, D.; Pasquini, B.; Vanderhaeghen, M. Dispersion relations in real and virtual Compton scattering. Phys. Rept. 2003, 378, 99–205. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, B.; Vanderhaeghen, M. Dispersion Theory in Electromagnetic Interactions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 75–103. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Vanderhaeghen, M.; Yang, S.N. Electromagnetic excitation of the Δ(1232)-resonance. Phys. Rept. 2007, 437, 125–232. [Google Scholar] [CrossRef] [Green Version]
- Phillips, D.R. The chiral structure of the neutron as revealed in electron and photon scattering. J. Phys. G 2009, 36, 104004. [Google Scholar] [CrossRef]
- Griesshammer, H.; McGovern, J.; Phillips, D.; Feldman, G. Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei. Prog. Part. Nucl. Phys. 2012, 67, 841–897. [Google Scholar] [CrossRef] [Green Version]
- Holstein, B.R.; Scherer, S. Hadron Polarizabilities. Ann. Rev. Nucl. Part. Sci. 2014, 64, 51–81. [Google Scholar] [CrossRef]
- Geng, L. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. China 2013, 8, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Deur, A.; Brodsky, S.J.; De Téramond, G.F. The Spin Structure of the Nucleon. Rept. Prog. Phys. 2019, 82, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherer, S.; Schindler, M.R. APrimer for Chiral Perturbation Theory; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Gegelia, J.; Japaridze, G. Matching heavy particle approach to relativistic theory. Phys. Rev. D 1999, 60, 114038. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.; Gegelia, J.; Japaridze, G.; Scherer, S. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D 2003, 68, 056005. [Google Scholar] [CrossRef] [Green Version]
- Lensky, V.; Pascalutsa, V. Manifestly-covariant chiral PT calculation of nucleon Compton scattering. Pisma Zh. Eksp. Teor. Fiz. 2009, 89, 127–132. [Google Scholar]
- Lensky, V.; Pascalutsa, V. Predictive powers of chiral perturbation theory in Compton scattering off protons. Eur. Phys. J. C 2010, 65, 195–209. [Google Scholar] [CrossRef]
- Lensky, V.; McGovern, J.; Pascalutsa, V. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering. Eur. Phys. J. C 2015, 75, 604. [Google Scholar] [CrossRef] [Green Version]
- Lensky, V.; Pascalutsa, V.; Vanderhaeghen, M. Generalized polarizabilities of the nucleon in baryon chiral perturbation theory. Eur. Phys. J. C 2017, 77, 119. [Google Scholar] [CrossRef] [Green Version]
- Lensky, V.; Alarcón, J.M.; Pascalutsa, V. Moments of nucleon structure functions at next-to-leading order in baryon chiral perturbation theory. Phys. Rev. C 2014, 90, 055202. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, J.M.; Hagelstein, F.; Lensky, V.; Pascalutsa, V. Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: The subtraction function and moments of unpolarized structure functions. Phys. Rev. D 2020, 102, 014006. [Google Scholar] [CrossRef]
- Alarcón, J.M.; Hagelstein, F.; Lensky, V.; Pascalutsa, V. Forward doubly-virtual Compton scattering off the nucleon in chiral perturbation theory: II. Spin polarizabilities and moments of polarized structure functions. arXiv 2020, arXiv:2006.08626. [Google Scholar]
- Ledwig, T.; Martin-Camalich, J.; Pascalutsa, V.; Vanderhaeghen, M. The Nucleon and Δ(1232) form factors at low momentum-transfer and small pion masses. Phys. Rev. D 2012, 85, 034013. [Google Scholar] [CrossRef] [Green Version]
- Patrignani, C.; Particle Data Group. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar]
- Pascalutsa, V.; Vanderhaeghen, M. Magnetic moment of the Delta(1232)-resonance in chiral effective field theory. Phys. Rev. Lett. 2005, 94, 102003. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Vanderhaeghen, M. The nucleon and Delta-resonance masses in relativistic chiral effective-field theory. Phys. Lett. B 2006, 636, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Vanderhaeghen, M. Chiral effective-field theory in the Δ(1232) region.I: Pion electroproduction on the nucleon. Phys. Rev. D 2006, 73, 034003. [Google Scholar] [CrossRef] [Green Version]
- Colangelo, G.; Gasser, J.; Leutwyler, H. ππ scattering. Nucl. Phys. B 2001, 603, 125–179. [Google Scholar] [CrossRef]
- Caprini, I.; Colangelo, G.; Leutwyler, H. Theoretical aspects of the pion-pion interaction. Int. J. Mod. Phys. A 2006, 21, 954–957. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Vanderhaeghen, M. Electromagnetic nucleon-to-Delta transition in chiral effective field theory. Phys. Rev. Lett. 2005, 95, 232001. [Google Scholar] [CrossRef] [Green Version]
- Hemmert, T.R.; Holstein, B.R.; Kambor, J. Systematic 1/M expansion for spin 3/2 particles in baryon chiral perturbation theory. Phys. Lett. B 1997, 395, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Phillips, D.R. Effective theory of the Δ(1232) in Compton scattering off the nucleon. Phys. Rev. C 2003, 67, 055202. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Epelbaum, E.; Krebs, H.; Meißner, U.G. New insights into the spin structure of the nucleon. Phys. Rev. D 2013, 87, 054032. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, D.; Kamalov, S.S.; Tiator, L. The GDH sum rule and related integrals. Phys. Rev. D 2001, 63, 114010. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, D.; Hanstein, O.; Kamalov, S.S.; Tiator, L. A unitary isobar model for pion photo- and electroproduction on the proton up to 1 GeV. Nucl. Phys. A 1999, 645, 145–174. [Google Scholar] [CrossRef] [Green Version]
- Thürmann, M.; Epelbaum, E.; Gasparyan, A.; Krebs, H. Nucleon polarizabilities in covariant baryon chiral perturbation theory with explicit Δ degrees of freedom. arXiv 2020, arXiv:2007.08438. [Google Scholar]
- Kao, C.W.; Spitzenberg, T.; Vanderhaeghen, M. Burkhardt-Cottingham sum rule and forward spin polarizabilities in heavy baryon chiral perturbation theory. Phys. Rev. D 2003, 67, 016001. [Google Scholar] [CrossRef] [Green Version]
- Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, W.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; et al. Measurement of the generalized forward spin polarizabilities of the neutron. Phys. Rev. Lett. 2004, 93, 152301. [Google Scholar] [CrossRef]
- McGovern, J.A.; Phillips, D.R.; Grießhammer, H.W. Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom. Eur. Phys. J. A 2013, 49, 12. [Google Scholar] [CrossRef]
- Lensky, V.; McGovern, J.A. Proton polarizabilities from Compton data using covariant chiral effective field theory. Phys. Rev. C 2014, 89, 032202. [Google Scholar] [CrossRef]
- Myers, L.S.; Annand, J.R.M.; Brudvik, J.; Feldman, G.; Fissum, K.G.; Grießhammer, H.W.; Hansen, K.; Henshaw, S.S.; Isaksson, L.; Jebali, R.; et al. Measurement of Compton Scattering from the Deuteron and an Improved Extraction of the Neutron Electromagnetic Polarizabilities. Phys. Rev. Lett. 2014, 113, 262506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, L.S.; Annand, J.R.M.; Brudvik, J.; Feldman, G.; Fissum, K.G.; Grießhammer, H.W.; Hansen, K.; Henshaw, S.S.; Isaksson, L.; Jebali, R.; et al. Compton Scattering from the Deuteron below Pion-Production Threshold. Phys. Rev. C 2015, 92, 025203. [Google Scholar] [CrossRef] [Green Version]
- Griesshammer, H.W.; McGovern, J.A.; Phillips, D.R. Nucleon Polarisabilities at and Beyond Physical Pion Masses. Eur. Phys. J. A 2016, 52, 139. [Google Scholar] [CrossRef]
- Jenkins, E.E.; Manohar, A.V. Baryon chiral perturbation theory using a heavy fermion Lagrangian. Phys. Lett. B 1991, 255, 558–562. [Google Scholar] [CrossRef]
- Butler, M.N.; Savage, M.J. Electromagnetic polarizability of the nucleon in chiral perturbation theory. Phys. Lett. B 1992, 294, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Kaiser, N.; Meißner, U.G. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 1995, 4, 193–346. [Google Scholar] [CrossRef] [Green Version]
- Hemmert, T.R.; Holstein, B.R.; Kambor, J. Δ(1232) and the Polarizabilities of the Nucleon. Phys. Rev. D 1997, 55, 5598–5612. [Google Scholar] [CrossRef] [Green Version]
- Hildebrandt, R.P.; Grießhammer, H.W.; Hemmert, T.R.; Pasquini, B. Signatures of chiral dynamics in low energy Compton scattering off the nucleon. Eur. Phys. J. A 2004, 20, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.W.; Drechsel, D.; Kamalov, S.; Vanderhaeghen, M. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model. Phys. Rev. D 2004, 69, 056004. [Google Scholar] [CrossRef] [Green Version]
- Nevado, D.; Pineda, A. Forward virtual Compton scattering and the Lamb shift in chiral perturbation theory. Phys. Rev. C 2008, 77, 035202. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.M.; Pascalutsa, V. Limitations of the heavy-baryon expansion as revealed by a pion-mass dispersion relation. Eur. Phys. J. C 2012, 72, 2206. [Google Scholar] [CrossRef] [Green Version]
- Hearn, A.C.; Leader, E. Fixed-Angle Dispersion Relations for Nucleon Compton Scattering. I. Phys. Rev. 1962, 126, 789–805. [Google Scholar] [CrossRef]
- Babusci, D.; Giordano, G.; L’vov, A.; Matone, G.; Nathan, A. Low-energy Compton scattering of polarized photons on polarized nucleons. Phys. Rev. C 1998, 58, 1013–1041. [Google Scholar] [CrossRef]
- Lensky, V.; Hagelstein, F.; Pascalutsa, V.; Vanderhaeghen, M. Sum rules across the unpolarized Compton processes involving generalized polarizabilities and moments of nucleon structure functions. Phys. Rev. D 2018, 97, 074012. [Google Scholar] [CrossRef] [Green Version]
- Pascalutsa, V.; Vanderhaeghen, M. Polarizability relations across real and virtual Compton scattering processes. Phys. Rev. D 2015, 91, 051503. [Google Scholar] [CrossRef] [Green Version]
- Lensky, V.; Pascalutsa, V.; Vanderhaeghen, M.; Kao, C. Spin-dependent sum rules connecting real and virtual Compton scattering verified. Phys. Rev. D 2017, 95, 074001. [Google Scholar] [CrossRef] [Green Version]
- Hemmert, T.R.; Holstein, B.R.; Kambor, J.; Knochlein, G. Compton scattering and the spin structure of the nucleon at low-energies. Phys. Rev. D 1998, 57, 5746–5754. [Google Scholar] [CrossRef] [Green Version]
- Low, F.E. Scattering of light of very low frequency by systems of spin 1/2. Phys. Rev. 1954, 96, 1428–1432. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Goldberger, M.L. Scattering of low-energy photons by particles of spin 1/2. Phys. Rev. 1954, 96, 1433–1438. [Google Scholar] [CrossRef]
- Pasquini, B.; Pedroni, P.; Sconfietti, S. First extraction of the scalar proton dynamical polarizabilities from real Compton scattering data. Phys. Rev. C 2018, 98, 015204. [Google Scholar] [CrossRef] [Green Version]
- Gilman, F.J. The kinematics and saturation of the sum rules and inequalities for inelastic electron scattering. Phys. Rev. 1968, 167, 1365–1371. [Google Scholar] [CrossRef]
- Drechsel, D.; Knochlein, G.; Korchin, A.; Metz, A.; Scherer, S. Low-energy and low momentum representation of the virtual Compton scattering amplitude. Phys. Rev. C 1998, 58, 1751–1757. [Google Scholar] [CrossRef] [Green Version]
- Martel, P.; Biroth, M.; Collicott, C.; Paudyal, D.; Rajabi, A. Compton Scattering Program Studying Nucleon Polarizabilities. EPJ Web Conf. 2017, 142, 01021. [Google Scholar] [CrossRef]
- Martel, P.P.; Miskimen, R.; Aguar-Bartolome, P.; Ahrens, J.; Akondi, C.S.; Annand, J.R.M.; Arends, H.J.; Barnes, W.; Beck, R.; Bernstein, A.; et al. Measurements of Double-Polarized Compton Scattering Asymmetries and Extraction of the Proton Spin Polarizabilities. Phys. Rev. Lett. 2015, 114, 112501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudyal, D.; Martel, P.P.; Huber, G.M.; Hornidge, D.; Abt, S.; Achenbach, P.; Adlarson, P.; Afzal, F.; Ahmed, Z.; Akondi, C.S.; et al. Spin polarizabilities of the proton by measurement of Compton double-polarization observables. arXiv 2020, arXiv:1909.02032. [Google Scholar]
- Sokhoyan, V.; Downie, E.J.; Mornacchi, E.; McGovern, J.A.; Krupina, N.; Afzal, F.; Ahrens, J.; Akondi, C.S.; Annand, J.R.; Arends, H.J.; et al. Determination of the scalar polarizabilities of the proton using beam asymmetry Σ3 in Compton scattering. Eur. Phys. J. A 2017, 53, 14. [Google Scholar] [CrossRef]
- Blanpied, G.; Blecher, M.; Caracappa, A.; Deininger, R.; Djalali, C.; Giordano, G.; Hicks, K.; Hoblit, S.; Khandaker, M.; Kistner, O.C.; et al. N —> delta transition and proton polarizabilities from measurements of p (gamma polarized, gamma), p (gamma polarized, pi0), and p (gamma polarized, pi+). Phys. Rev. C 2001, 64, 025203. [Google Scholar] [CrossRef]
- Krupina, N.; Lensky, V.; Pascalutsa, V. Partial-wave analysis of proton Compton scattering data below the pion-production threshold. Phys. Lett. B 2018, 782, 34–41. [Google Scholar] [CrossRef]
- Beričič, J.; Correa, L.; Benali, M.; Achenbach, P.; Gayoso, C.A.; Bernauer, J.C.; Blomberg, A.; Böhm, R.; Bosnar, D.; Debenjak, L.; et al. New Insight in the Q2-Dependence of Proton Generalized Polarizabilities. Phys. Rev. Lett. 2019, 123, 192302. [Google Scholar] [CrossRef] [Green Version]
- Guiasu, I.; Radescu, E. Higher Multipole Polarizabilities of Hadrons from Compton Scattering Amplitudes. Annals Phys. 1979, 120, 145. [Google Scholar] [CrossRef]
- Holstein, B.R.; Drechsel, D.; Pasquini, B.; Vanderhaeghen, M. Higher order polarizabilities of the proton. Phys. Rev. C 2000, 61, 034316. [Google Scholar] [CrossRef] [Green Version]
- Gerasimov, S. A Sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei. Sov. J. Nucl. Phys. 1966, 2, 430–433. [Google Scholar]
- Drell, S.; Hearn, A.C. Exact Sum Rule for Nucleon Magnetic Moments. Phys. Rev. Lett. 1966, 16, 908–911. [Google Scholar] [CrossRef]
- Ahrens, J.; Altieri, S.; Annand, J.R.; Anton, G.; Arends, H.J.; Aulenbacher, K.; Beck, R.; Bradtke, C.; Braghieri, A.; Degrande, N.; et al. First measurement of the Gerasimov-Drell-Hearn integral for Hydrogen from 200 to 800 MeV. Phys. Rev. Lett. 2001, 87, 022003. [Google Scholar] [CrossRef] [Green Version]
- Helbing, K. Experimental verification of the GDH sum rule at ELSA and MAMI. Nucl. Phys. Proc. Suppl. 2002, 105, 113–116. [Google Scholar] [CrossRef]
- Tiator, L. Private communication. 2020. [Google Scholar]
- Prok, Y.; CLAS Collaboration. Moments of the Spin Structure Functions g1p and g1d for 0.05<Q2<3.0 GeV2. Phys. Lett. B 2009, 672, 12–16. [Google Scholar]
- Gryniuk, O.; Hagelstein, F.; Pascalutsa, V. Evaluation of the forward Compton scattering off protons: II. Spin-dependent amplitude and observables. Phys. Rev. D 2016, 94, 034043. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, R. The g2p Experiment: A Measurement of the Proton’s Spin Structure Functions. arXiv 2010, arXiv:1708.08297. [Google Scholar]
- Guler, N.; Fersch, R.G.; Kuhn, S.E.; Bosted, P.; Griffioen, K.A.; Keith, C.; Minehart, R.; Prok, Y.; Adhikari, K.P.; Adikaram, D.; et al. Precise determination of the deuteron spin structure at low to moderate Q2 with CLAS and extraction of the neutron contribution. Phys. Rev. C 2015, 92, 055201. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, D.; Kamalov, S.; Tiator, L. Unitary Isobar Model—MAID2007. Eur. Phys. J. A 2007, 34, 69–97. [Google Scholar] [CrossRef]
- Pasquini, B.; Pedroni, P.; Drechsel, D. Higher order forward spin polarizability. Phys. Lett. B 2010, 687, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; Robinson, D.J.; et al. Review of Paticle Physics. Prog. Theor. Exp. Phys. 2020, 8, 083C01. [Google Scholar] [CrossRef]
- Dutz, H.V.; Helbing, K.; Krimmer, J.; Speckner, T.; Zeitler, G.; Ahrens, J.; Altieri, S.; Annand, J.R.; Anton, G.; Arends, H.J.; et al. First measurement of the Gerasimov-Drell-Hearn sum rule for 1H from 0.7 GeV to 1.8 GeV at ELSA. Phys. Rev. Lett. 2003, 91, 192001. [Google Scholar] [CrossRef]
- Kossert, K.; Camen, M.; Wissmann, F.; Ahrens, J.; Annand, J.R.; Arends, H.J.; Beck, R.; Caselotti, G.; Grabmayr, P.; Jahn, O.; et al. Quasifree Compton scattering and the polarizabilities of the neutron. Eur. Phys. J. A 2003, 16, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, M. Polarizability of the nucleon. LHEP 2019, 4, 4. [Google Scholar] [CrossRef]
- Pasquini, B.; Pedroni, P.; Sconfietti, S. Proton scalar dipole polarizabilities from real Compton scattering data, using fixed-t subtracted dispersion relations and the bootstrap method. J. Phys. G 2019, 46, 104001. [Google Scholar] [CrossRef] [Green Version]
- Bignell, R.; Kamleh, W.; Leinweber, D. Magnetic polarizability of the nucleon using a Laplacian mode projection. Phys. Rev. D 2020, 101, 094502. [Google Scholar] [CrossRef]
- Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD. Phys. Rev. D 2016, 94, 074506. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.M.M.; Leinweber, D.B.; Young, R.D. Finite-volume and partial quenching effects in the magnetic polarizability of the neutron. Phys. Rev. D 2014, 89, 054511. [Google Scholar] [CrossRef] [Green Version]
- Detmold, W.; Tiburzi, B.; Walker-Loud, A. Extracting Nucleon Magnetic Moments and Electric Polarizabilities from Lattice QCD in Background Electric Fields. Phys. Rev. D 2010, 81, 054502. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, M. Neutron electric polarizability from unquenched lattice QCD using the background field approach. Phys. Rev. D 2007, 76, 114502. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.C.; Wilcox, W.; Lee, F.X.; Zhou, L. Electric polarizability of neutral hadrons from lattice QCD. Phys. Rev. D 2005, 72, 034503. [Google Scholar] [CrossRef] [Green Version]
- Bernard, V.; Kaiser, N.; Meissner, U.G.; Schmidt, A. Aspects of nucleon Compton scattering. Z. Phys. A 1994, 348, 317. [Google Scholar] [CrossRef] [Green Version]
- Krebs, H. Double Virtual Compton Scattering and SpinStructure of the Nucleon. PoS 2019, CD2018, 31. [Google Scholar]
- Slifer, K.; (University of New Hampshire, Durham, NH, USA). Personal communication, 2018.
- Birse, M.C.; McGovern, J.A. Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory. Eur. Phys. J. A 2012, 48, 120. [Google Scholar] [CrossRef] [Green Version]
- Peset, C.; Pineda, A. The two-photon exchange contribution to muonic hydrogen from chiral perturbation theory. Nucl. Phys. B 2014, 887, 69–111. [Google Scholar] [CrossRef] [Green Version]
- Krupina, N.; Pascalutsa, V. Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering. Phys. Rev. Lett. 2013, 110, 262001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, M. Polarizability of the Nucleon and Compton Scattering. Prog. Part. Nucl. Phys. 2005, 55, 567–646. [Google Scholar] [CrossRef]
- Pasquini, B.; Drechsel, D.; Vanderhaeghen, M. Proton spin polarizabilities from polarized Compton scattering. Phys. Rev. C 2007, 76, 015203. [Google Scholar] [CrossRef] [Green Version]
- Bignell, R.; Hall, J.; Kamleh, W.; Leinweber, D.; Burkardt, M. Neutron magnetic polarizability with Landau mode operators. Phys. Rev. D 2018, 98, 034504. [Google Scholar] [CrossRef] [Green Version]
- Hannaford-Gunn, A.; Horsley, R.; Nakamura, Y.; Perlt, H.; Rakow, P.; Schierholz, G.; Somfleth, K.; Stüben, H.; Young, R.; Zanotti, J. Scaling and higher twist in the nucleon Compton amplitude. arXiv 2001, arXiv:2001.05090. [Google Scholar]
- Chambers, A.; Horsley, R.; Nakamura, Y.; Perlt, H.; Rakow, P.; Schierholz, G.; Schiller, A.; Somfleth, K.; Young, R.; Zanotti, J. Nucleon Structure Functions from Operator Product Expansion on the Lattice. Phys. Rev. Lett. 2017, 118, 242001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Can, K.U.; Hannaford-Gunn, A.; Horsley, R.; Nakamura, Y.; Perlt, H.; Rakow, P.E.; Schierholz, G.; Somfleth, K.Y.; Stüben, H.; Young, R.D.; et al. Lattice evaluation of the Compton amplitude employing the Feynman-Hellmann theorem. arXiv 2007, arXiv:2007.01523. [Google Scholar]
- Sulkosky, V.; Singh, J.T.; Peng, C.; Chen, J.P.; Deur, A.; Abrahamyan, S.; Aniol, K.A.; Armstrong, D.S.; Averett, T.; Bailey, S.L.; et al. Measurement of the 3He spin-structure functions and of neutron (3He) spin-dependent sum rules at 0.035 ≤ Q2 ≤ 0.24 GeV2. Phys. Lett. B 2020, 805, 135428. [Google Scholar] [CrossRef]
- Melendez, J.; Furnstahl, R.; Grießhammer, H.; McGovern, J.; Phillips, D.; Pratola, M. Designing Optimal Experiments: An Application to Proton Compton Scattering. arXiv 2004, arXiv:2004.11307. [Google Scholar]
- L’vov, A.I.; Petrun’kin, V.A.; Schumacher, M. Dispersion theory of proton Compton scattering in the first and second resonance regions. Phys. Rev. C 1997, 55, 359–377. [Google Scholar] [CrossRef]
- Drechsel, D.; Gorchtein, M.; Pasquini, B.; Vanderhaeghen, M. Fixed-t subtracted dispersion relations for Compton scattering off the nucleon. Phys. Rev. C 2000, 61, 015204. [Google Scholar] [CrossRef] [Green Version]
- Mornacchi, E. Measurement of the proton scalar polarizabilities at MAMI. EPJ Web Conf. 2019, 199, 05020. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.W. Compton Scattering from Light Nuclei at the High Intensity Gamma Ray Source and Electromagnetic Polarizabilities. PoS 2020, CD2018, 001. [Google Scholar]
- Adhikari, K.P.; Deur, A.; El Fassi, L.; Kang, H.; Kuhn, S.E.; Ripani, M.; Slifer, K.; Zheng, X.; Adhikari, S.; Akbar, Z.; et al. Measurement of the Q2 Dependence of the Deuteron Spin Structure Function g1 and its Moments at Low Q2 with CLAS. Phys. Rev. Lett. 2018, 120, 062501. [Google Scholar] [CrossRef] [Green Version]
- Ton, N. Experimental study of the 3He and neutron spin structure at low Q-squared using a polarized 3He target. PoS 2019, CD2018, 044. [Google Scholar]
Order in Chiral Expansion | PT Parameters | Values | Sources | |
---|---|---|---|---|
fine-structure constant | ||||
nucleon mass | MeV | |||
nucleon axial charge | neutron decay [47] | |||
pion decay constant | MeV | pion decay [47] | ||
pion mass | MeV | |||
-to- axial coupling | partial wave in scattering and decay width [30,48,49] | |||
mass | 1232 MeV | |||
magnetic (M1) coupling | pion electroproduction [50] | |||
electric (E2) coupling | ||||
Coulomb (C2) coupling |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagelstein, F. Nucleon Polarizabilities and Compton Scattering as Playground for Chiral Perturbation Theory. Symmetry 2020, 12, 1407. https://doi.org/10.3390/sym12091407
Hagelstein F. Nucleon Polarizabilities and Compton Scattering as Playground for Chiral Perturbation Theory. Symmetry. 2020; 12(9):1407. https://doi.org/10.3390/sym12091407
Chicago/Turabian StyleHagelstein, Franziska. 2020. "Nucleon Polarizabilities and Compton Scattering as Playground for Chiral Perturbation Theory" Symmetry 12, no. 9: 1407. https://doi.org/10.3390/sym12091407