On the Remarkable Superconductivity of FeSe and Its Close Cousins
Abstract
1 | Introduction | 2 |
2 | Overview | 4 |
2.1 Iron Pnictides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 4 | |
2.2 How FeSe Is Different from Pnictides.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 5 | |
2.3 Theoretical Approaches to Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 7 | |
3 | Bulk FeSe | 9 |
3.1 Electronic Structure of FeSe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 9 | |
3.2 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14 | |
3.2.1 Long Range Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 14 | |
3.2.2 Spin Fluctuations in Normal State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 15 | |
3.3 Superconducting Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 17 | |
3.3.1 Thermodynamic Probe of Quasiparticle Excitations. . . . . . . . . . . . . . . . . . . . . . . . . . . | 17 | |
3.3.2 STM/ARPES Measurements of Gap Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 19 | |
3.3.3 Orbital Selective Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 20 | |
3.3.4 BCS-BEC Crossover Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 24 | |
3.3.5 Spin Fluctuations in Superconducting State .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 25 | |
4 | Effects of Physical and Chemical Pressure | 26 |
4.1 FeSe under Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 26 | |
4.2 FeSe under Chemical Pressure: S Substituion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 27 | |
4.3 Diminishing Correlations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 28 | |
4.4 Abrupt Change in Gap Symmetry in Tetragonal Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 28 | |
4.5 Bogoliubov Fermi Surface Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 29 | |
5 | FeSe/STO Monolayer + Dosing of FeSe Surfaces | 30 |
5.1 Single Layer Films of FeSe on SrTiO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 30 | |
5.1.1 Electronic Structure and Electron Doping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 30 | |
5.1.2 Structure of the Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 31 | |
5.1.3 Transition Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 31 | |
5.2 Dosing of FeSe Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 32 | |
5.3 Replica Bands and Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 32 | |
5.4 Pairing State in Monolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 34 | |
5.4.1 e-Pocket only Pairing: d- and Bonding–Antibonding s-Wave. . . . . . . . . . . . . . . . . . . | 34 | |
5.4.2 SOC Driven Pair States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 34 | |
5.4.3 Incipient Band s± Pairing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 35 | |
5.5 Impurity Experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 36 | |
6 | FeSe Intercalates | 36 |
6.1 Alkali-Intercalated FeSe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 36 | |
6.2 Organic Intercalates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 37 | |
6.3 LiOH Intercalates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 37 | |
7 | Topological Phases of Matter in Iron-Based Superconductors | 39 |
7.1 Basic Properties of FeTeSe .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 39 | |
7.2 Theoretical Proposals for Topological Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 41 | |
7.3 Experimental Evidence for Topological Bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 43 | |
7.4 Topological Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 44 | |
7.5 Experimental Evidence for Majorana Zero Modes: Defect States. . . . . . . . . . . . . . . . . . . . . . . | 46 | |
7.6 Experimental Evidence for Majorana Zero Modes: Vortex States. . . . . . . . . . . . . . . . . . . . . . . | 47 | |
7.7 One-Dimensional Dispersive Majorana Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 50 | |
7.8 Higher-Order Topological States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 50 | |
8 | Conclusions | 51 |
References | 52 |
1. Introduction
2. Overview
2.1. Iron Pnictides
2.2. How FeSe Is Different from Pnictides
2.3. Theoretical Approaches to Pairing
3. Bulk FeSe
3.1. Electronic Structure of FeSe
3.2. Magnetic Properties
3.2.1. Long Range Order
3.2.2. Spin Fluctuations in Normal State
3.3. Superconducting Gap
3.3.1. Thermodynamic Probe of Quasiparticle Excitations
3.3.2. STM/ARPES Measurements of Gap Structure
3.3.3. Orbital Selective Pairing
3.3.4. BCS-BEC Crossover Scenario
3.3.5. Spin Fluctuations in Superconducting State
4. Effects of Physical and Chemical Pressure
4.1. FeSe under Pressure
4.2. FeSe under Chemical Pressure: S Substituion
4.3. Diminishing Correlations
4.4. Abrupt Change in Gap Symmetry in Tetragonal Phase
4.5. Bogoliubov Fermi Surface Scenario
5. FeSe/STO Monolayer + Dosing of FeSe Surfaces
5.1. Single Layer Films of FeSe on SrTiO
5.1.1. Electronic Structure and Electron Doping
5.1.2. Structure of the Interface
5.1.3. Transition Temperature
5.2. Dosing of FeSe Surface
5.3. Replica Bands and Phonons
5.4. Pairing State in Monolayers
5.4.1. e-Pocket only Pairing: d- and Bonding–Antibonding s-Wave
5.4.2. SOC Driven Pair States
5.4.3. Incipient Band Pairing
5.5. Impurity Experiments
6. FeSe Intercalates
6.1. Alkali-Intercalated FeSe
6.2. Organic Intercalates
6.3. LiOH Intercalates
7. Topological Phases of Matter in Iron-Based Superconductors
7.1. Basic Properties of FeTeSe
7.2. Theoretical Proposals for Topological Bands
7.3. Experimental Evidence for Topological Bands
7.4. Topological Superconductivity
7.5. Experimental Evidence for Majorana Zero Modes: Defect States
7.6. Experimental Evidence for Majorana Zero Modes: Vortex States
7.7. One-Dimensional Dispersive Majorana Modes
7.8. Higher-Order Topological States
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirschfeld, P.J.; Korshunov, M.M.; Mazin, I.I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 2011, 74, 124508. [Google Scholar] [CrossRef]
- Chubukov, A.; Hirschfeld, P.J. Iron-based superconductors, seven years later. Phys. Today 2015, 68, 46–52. [Google Scholar] [CrossRef]
- Hirschfeld, P.J. Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors. C. R. Phys. 2016, 17, 197. [Google Scholar] [CrossRef]
- Maiti, S.; Chubukov, A.V. Superconductivity from Repulsive Interaction; American Institute of Physics Conference Series; Avella, A., Mancini, F., Eds.; American Institute of Physics: College Park, MD, USA, 2013; Volume 1550, pp. 3–73. [Google Scholar] [CrossRef]
- Mazin, I.I.; Singh, D.J.; Johannes, M.D.; Du, M.H. Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1−xFx. Phys. Rev. Lett. 2008, 101, 057003. [Google Scholar] [CrossRef]
- Kuroki, K.; Onari, S.; Arita, R.; Usui, H.; Tanaka, Y.; Kontani, H.; Aoki, H. Unconventional Pairing Originating from the Disconnected Fermi Surfaces of Superconducting LaFeAsO1−xFx. Phys. Rev. Lett. 2008, 101, 087004. [Google Scholar] [CrossRef]
- Maier, T.A.; Graser, S.; Scalapino, D.J.; Hirschfeld, P.J. Origin of gap anisotropy in spin fluctuation models of the iron pnictides. Phys. Rev. B 2009, 79, 224510. [Google Scholar] [CrossRef]
- Zhang, J.; Sknepnek, R.; Fernandes, R.M.; Schmalian, J. Orbital coupling and superconductivity in the iron pnictides. Phys. Rev. B 2009, 79, 220502. [Google Scholar] [CrossRef]
- Maiti, S.; Korshunov, M.M.; Maier, T.A.; Hirschfeld, P.J.; Chubukov, A.V. Evolution of the Superconducting State of Fe-Based Compounds with Doping. Phys. Rev. Lett. 2011, 107, 147002. [Google Scholar] [CrossRef]
- Platt, C.; Thomale, R.; Honerkamp, C.; Zhang, S.C.; Hanke, W. Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors. Phys. Rev. B 2012, 85, 180502. [Google Scholar] [CrossRef]
- Cvetkovic, V.; Vafek, O. Space group symmetry, spin-orbit coupling, and the low-energy effective Hamiltonian for iron-based superconductors. Phys. Rev. B 2013, 88, 134510. [Google Scholar] [CrossRef]
- Maiti, S.; Chubukov, A.V. s+is state with broken time-reversal symmetry in Fe-based superconductors. Phys. Rev. B 2013, 87, 144511. [Google Scholar] [CrossRef]
- Inosov, D.S. Spin fluctuations in iron pnictides and chalcogenides: From antiferromagnetism to superconductivity. C. R. Phys. 2016, 17, 60–89. [Google Scholar] [CrossRef]
- Balatsky, A.V.; Vekhter, I.; Zhu, J.X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 2006, 78, 373–433. [Google Scholar] [CrossRef]
- Alloul, H.; Bobroff, J.; Gabay, M.; Hirschfeld, P.J. Defects in correlated metals and superconductors. Rev. Mod. Phys. 2009, 81, 45–108. [Google Scholar] [CrossRef]
- Efremov, D.V.; Korshunov, M.M.; Dolgov, O.V.; Golubov, A.A.; Hirschfeld, P.J. Disorder-induced transition between s± and s++ states in two-band superconductors. Phys. Rev. B 2011, 84, 180512. [Google Scholar] [CrossRef]
- Prozorov, R.; Kończykowski, M.; Tanatar, M.A.; Thaler, A.; Bud’ko, S.L.; Canfield, P.C.; Mishra, V.; Hirschfeld, P.J. Effect of Electron Irradiation on Superconductivity in Single Crystals of Ba(Fe1−xRux)2As2 (x = 0.24). Phys. Rev. X 2014, 4, 041032. [Google Scholar] [CrossRef]
- Ghigo, G.; Torsello, D.; Ummarino, G.A.; Gozzelino, L.; Tanatar, M.A.; Prozorov, R.; Canfield, P.C. Disorder-Driven Transition from s± to s++ Superconducting Order Parameter in Proton Irradiated Ba(Fe1−xRhx)2As2 Single Crystals. Phys. Rev. Lett. 2018, 121, 107001. [Google Scholar] [CrossRef]
- Hirschfeld, P.J.; Altenfeld, D.; Eremin, I.; Mazin, I.I. Robust determination of the superconducting gap sign structure via quasiparticle interference. Phys. Rev. B 2015, 92, 184513. [Google Scholar] [CrossRef]
- Sprau, P.O.; Kostin, A.; Kreisel, A.; Böhmer, A.E.; Taufour, V.; Canfield, P.C.; Mukherjee, S.; Hirschfeld, P.J.; Andersen, B.M.; Davis, J.C.S. Discovery of orbital-selective Cooper pairing in FeSe. Science 2017, 357, 75–80. [Google Scholar] [CrossRef]
- Du, Z.; Yang, X.; Altenfeld, D.; Gu, Q.; Yang, H.; Eremin, I.; Hirschfeld, P.J.; Mazin, I.I.; Lin, H.; Zhu, X.; et al. Sign reversal of the order parameter in (Li1−xFex)OHFe1-yZnySe. Nat. Phys. 2018, 14, 134–139. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Takano, Y. Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor. J. Phys. Soc. Jpn. 2010, 79, 102001. [Google Scholar] [CrossRef]
- Shibauchi, T.; Hanaguri, T.; Matsuda, Y. Exotic Superconducting States in FeSe-based Materials. arXiv 2020, arXiv:2005.07315. [Google Scholar]
- Böhmer, A.E.; Kreisel, A. Nematicity, magnetism and superconductivity in FeSe. J. Phys. Condens. Matter 2017, 30, 023001. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Hu, J. Topological quantum states of matter in iron-based superconductors: From concept to material realization. Natl. Sci. Rev. 2018, 6, 213–226. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, R.X.; Xu, G.; Hu, J.; Liu, C.X. In the Pursuit of Majorana Modes in Iron-based High-Tc Superconductors. arXiv 2020, arXiv:2005.03603. [Google Scholar]
- Paglione, J.; Greene, R.L. High-temperature superconductivity in iron-based materials. Nat. Phys. 2010, 6, 645–658. [Google Scholar] [CrossRef]
- Johnston, D.C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 2010, 59, 803–1061. [Google Scholar] [CrossRef]
- Stewart, G.R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Physica C Supercond. Its Appl. 2015, 514, 399–422. [Google Scholar] [CrossRef]
- Guterding, D.; Backes, S.; Tomić, M.; Jeschke, H.O.; Valentí, R. Ab initio perspective on structural and electronic properties of iron-based superconductors. Phys. Status Solidi (b) 2017, 254, 1600164. [Google Scholar] [CrossRef]
- Kamihara, Y.; Hiramatsu, H.; Hirano, M.; Kawamura, R.; Yanagi, H.; Kamiya, T.; Hosono, H. Iron-Based Layered Superconductor: LaOFeP. J. Am. Chem. Soc. 2006, 128, 10012–10013. [Google Scholar] [CrossRef] [PubMed]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef] [PubMed]
- Mazin, I.I. Superconductivity gets an iron boost. Nature 2010, 464, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Scalapino, D.J. A common thread: The pairing interaction for unconventional superconductors. Rev. Mod. Phys. 2012, 84, 1383–1417. [Google Scholar] [CrossRef]
- Fanfarillo, L.; Mansart, J.; Toulemonde, P.; Cercellier, H.; Le Fèvre, P.; Bertran, F.; Valenzuela, B.; Benfatto, L.; Brouet, V. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 2016, 94, 155138. [Google Scholar] [CrossRef]
- Dai, P.; Hu, J.; Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat. Phys. 2012, 8, 709–718. [Google Scholar] [CrossRef]
- Lorenzana, J.; Seibold, G.; Ortix, C.; Grilli, M. Competing Orders in FeAs Layers. Phys. Rev. Lett. 2008, 101, 186402. [Google Scholar] [CrossRef]
- Eremin, I.; Chubukov, A.V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 2010, 81, 024511. [Google Scholar] [CrossRef]
- Brydon, P.M.R.; Daghofer, M.; Timm, C. Magnetic order in orbital models of the iron pnictides. J. Phys. Condens. Matter 2011, 23, 246001. [Google Scholar] [CrossRef]
- Böhmer, A.E.; Hardy, F.; Wang, L.; Wolf, T.; Schweiss, P.; Meingast, C. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1−xKxFe2As2. Nat. Commun. 2015, 6, 7911. [Google Scholar] [CrossRef]
- Gastiasoro, M.N.; Andersen, B.M. Competing magnetic double-Q phases and superconductivity-induced reentrance of C2 magnetic stripe order in iron pnictides. Phys. Rev. B 2015, 92, 140506. [Google Scholar] [CrossRef]
- Christensen, M.H.; Scherer, D.D.; Kotetes, P.; Andersen, B.M. Role of multiorbital effects in the magnetic phase diagram of iron pnictides. Phys. Rev. B 2017, 96, 014523. [Google Scholar] [CrossRef]
- Wang, L.; He, M.; Scherer, D.D.; Hardy, F.; Schweiss, P.; Wolf, T.; Merz, M.; Andersen, B.M.; Meingast, C. Competing Electronic Phases near the Onset of Superconductivity in Hole-doped SrFe2As2. J. Phys. Soc. Jpn. 2019, 88, 104710. [Google Scholar] [CrossRef]
- Christensen, M.H.; Andersen, B.M.; Kotetes, P. Unravelling Incommensurate Magnetism and Its Emergence in Iron-Based Superconductors. Phys. Rev. X 2018, 8, 041022. [Google Scholar] [CrossRef]
- Chandra, P.; Coleman, P.; Larkin, A.I. Ising transition in frustrated Heisenberg models. Phys. Rev. Lett. 1990, 64, 88–91. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Chubukov, A.V.; Knolle, J.; Eremin, I.; Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 2012, 85, 024534. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Chubukov, A.V.; Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 2014, 10, 97–104. [Google Scholar] [CrossRef]
- Yamakawa, Y.; Kontani, H. Nematicity, magnetism, and superconductivity in FeSe under pressure: Unified explanation based on the self-consistent vertex correction theory. Phys. Rev. B 2017, 96, 144509. [Google Scholar] [CrossRef]
- Graser, S.; Maier, T.A.; Hirschfeld, P.J.; Scalapino, D.J. Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides. New J. Phys. 2009, 11, 025016. [Google Scholar] [CrossRef]
- Lee, W.C.; Zhang, S.C.; Wu, C. Pairing State with a Time-Reversal Symmetry Breaking in FeAs-Based Superconductors. Phys. Rev. Lett. 2009, 102, 217002. [Google Scholar] [CrossRef]
- Stanev, V.; Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. Phys. Rev. B 2010, 81, 134522. [Google Scholar] [CrossRef]
- Grinenko, V.; Sarkar, R.; Kihou, K.; Lee, C.H.; Morozov, I.; Aswartham, S.; Büchner, B.; Chekhonin, P.; Skrotzki, W.; Nenkov, K.; et al. Superconductivity with broken time-reversal symmetry inside a superconducting s-wave state. Nat. Phys. 2020, 16, 789–794. [Google Scholar] [CrossRef]
- Wang, Y.; Kreisel, A.; Hirschfeld, P.J.; Mishra, V. Using controlled disorder to distinguish s± and s++ gap structure in Fe-based superconductors. Phys. Rev. B 2013, 87, 094504. [Google Scholar] [CrossRef]
- Golubov, A.A.; Mazin, I.I. Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity. Phys. Rev. B 1997, 55, 15146–15152. [Google Scholar] [CrossRef]
- Korshunov, M.M.; Togushova, Y.N.; Dolgov, O.V. Impurities in multiband superconductors. Phys.-Uspekhi 2016, 59, 1211–1240. [Google Scholar] [CrossRef]
- Stanev, V.; Koshelev, A.E. Complex state induced by impurities in multiband superconductors. Phys. Rev. B 2014, 89, 100505. [Google Scholar] [CrossRef]
- Silaev, M.; Garaud, J.; Babaev, E. Phase diagram of dirty two-band superconductors and observability of impurity-induced s+is state. Phys. Rev. B 2017, 95, 024517. [Google Scholar] [CrossRef]
- Garaud, J.; Corticelli, A.; Silaev, M.; Babaev, E. Properties of dirty two-band superconductors with repulsive interband interaction: Normal modes, length scales, vortices, and magnetic response. Phys. Rev. B 2018, 98, 014520. [Google Scholar] [CrossRef]
- Böhmer, A.E.; Hardy, F.; Eilers, F.; Ernst, D.; Adelmann, P.; Schweiss, P.; Wolf, T.; Meingast, C. Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe. Phys. Rev. B 2013, 87, 180505. [Google Scholar] [CrossRef]
- Hsu, F.C.; Luo, J.Y.; Yeh, K.W.; Chen, T.K.; Huang, T.W.; Wu, P.M.; Lee, Y.C.; Huang, Y.L.; Chu, Y.Y.; Yan, D.C.; et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264. [Google Scholar] [CrossRef]
- Yoshikazu, M.; Yoshihiko, T. Superconductivity in PbO-type Fe chalcogenides. Z. Krist. Cryst. Mater. 2011, 226, 417. [Google Scholar] [CrossRef]
- Coldea, A.I.; Watson, M.D. The Key Ingredients of the Electronic Structure of FeSe. Ann. Rev. Cond. Mat. Phys. 2018, 9, 125–146. [Google Scholar] [CrossRef]
- Sadovskii, M.V. High-temperature superconductivity in FeSe monolayers. Phys.-Uspekhi 2016, 59, 947. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Liu, Y.; Wang, J. High-temperature superconductivity in one-unit-cell FeSe films. J. Phys. Condens. Matter 2017, 29, 153001. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Hoffman, J.E. Monolayer FeSe on SrTiO3. Annu. Rev. Condens. Matter Phys. 2017, 8, 311–336. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J. Heterostructural one-unit-cell FeSe/SrTiO3: From high-temperature superconductivity to topological states. 2D Mater. 2020, 7, 022006. [Google Scholar] [CrossRef]
- Mandal, S.; Zhang, P.; Ismail-Beigi, S.; Haule, K. How Correlated is the FeSe/SrTiO3 System? Phys. Rev. Lett. 2017, 119, 067004. [Google Scholar] [CrossRef]
- Evtushinsky, D.V.; Aichhorn, M.; Sassa, Y.; Liu, Z.H.; Maletz, J.; Wolf, T.; Yaresko, A.N.; Biermann, S.; Borisenko, S.V.; Büchner, B. Direct observation of dispersive lower Hubbard band in iron-based superconductor FeSe. arXiv 2016, arXiv:1612.02313. [Google Scholar]
- Watson, M.D.; Backes, S.; Haghighirad, A.A.; Hoesch, M.; Kim, T.K.; Coldea, A.I.; Valentí, R. Formation of Hubbard-like bands as a fingerprint of strong electron-electron interactions in FeSe. Phys. Rev. B 2017, 95, 081106. [Google Scholar] [CrossRef]
- Yin, Z.P.; Haule, K.; Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 2011, 10, 932. [Google Scholar] [CrossRef]
- De’ Medici, L.; Giovannetti, G.; Capone, M. Selective Mott Physics as a Key to Iron Superconductors. Phys. Rev. Lett. 2014, 112, 177001. [Google Scholar] [CrossRef] [PubMed]
- Aichhorn, M.; Biermann, S.; Miyake, T.; Georges, A.; Imada, M. Theoretical evidence for strong correlations and incoherent metallic state in FeSe. Phys. Rev. B 2010, 82, 064504. [Google Scholar] [CrossRef]
- Lanatà, N.; Strand, H.U.R.; Giovannetti, G.; Hellsing, B.; de’ Medici, L.; Capone, M. Orbital selectivity in Hund’s metals: The iron chalcogenides. Phys. Rev. B 2013, 87, 045122. [Google Scholar] [CrossRef]
- Yi, M.; Zhang, Y.; Shen, Z.X.; Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2017, 2, 57. [Google Scholar] [CrossRef]
- Ortenzi, L.; Cappelluti, E.; Benfatto, L.; Pietronero, L. Fermi-Surface Shrinking and Interband Coupling in Iron-Based Pnictides. Phys. Rev. Lett. 2009, 103, 046404. [Google Scholar] [CrossRef]
- Zantout, K.; Backes, S.; Valentí, R. Effect of Nonlocal Correlations on the Electronic Structure of LiFeAs. Phys. Rev. Lett. 2019, 123, 256401. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Björnson, K.; Zantout, K.; Steffensen, D.; Fanfarillo, L.; Kreisel, A.; Valentí, R.; Andersen, B.M.; Hirschfeld, P.J. Nonlocal correlations in iron pnictides and chalcogenides. Phys. Rev. B 2020, 102, 035109. [Google Scholar] [CrossRef]
- Kasahara, S.; Yamashita, T.; Shi, A.; Kobayashi, R.; Shimoyama, Y.; Watashige, T.; Ishida, K.; Terashima, T.; Wolf, T.; Hardy, F.; et al. Giant superconducting fluctuations in the compensated semimetal FeSe at the BCS-BEC crossover. Nat. Commun. 2016, 7, 12843. [Google Scholar] [CrossRef]
- Chubukov, A.V.; Eremin, I.; Efremov, D.V. Superconductivity versus bound-state formation in a two-band superconductor with small Fermi energy: Applications to Fe pnictides/chalcogenides and doped SrTiO3. Phys. Rev. B 2016, 93, 174516. [Google Scholar] [CrossRef]
- Eschrig, H.; Koepernik, K. Tight-binding models for the iron-based superconductors. Phys. Rev. B 2009, 80, 104503. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Chubukov, A.V. Low-energy microscopic models for iron-based superconductors: A review. Rep. Prog. Phys. 2017, 80, 014503. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.F.; Maier, T.A.; Graser, S.; Cheng, H.P.; Hirschfeld, P.J.; Scalapino, D.J. Sensitivity of the superconducting state and magnetic susceptibility to key aspects of electronic structure in ferropnictides. New J. Phys. 2010, 12, 073030. [Google Scholar] [CrossRef]
- Berk, N.F.; Schrieffer, J.R. Effect of Ferromagnetic Spin Correlations on Superconductivity. Phys. Rev. Lett. 1966, 17, 433–435. [Google Scholar] [CrossRef]
- Brouet, V.; Lin, P.H.; Texier, Y.; Bobroff, J.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Casula, M.; Werner, P.; Biermann, S.; et al. Large Temperature Dependence of the Number of Carriers in Co-Doped BaFe2As2. Phys. Rev. Lett. 2013, 110, 167002. [Google Scholar] [CrossRef] [PubMed]
- Kushnirenko, Y.S.; Kordyuk, A.A.; Fedorov, A.V.; Haubold, E.; Wolf, T.; Büchner, B.; Borisenko, S.V. Anomalous temperature evolution of the electronic structure of FeSe. Phys. Rev. B 2017, 96, 100504. [Google Scholar] [CrossRef]
- Huynh, K.K.; Tanabe, Y.; Urata, T.; Oguro, H.; Heguri, S.; Watanabe, K.; Tanigaki, K. Electric transport of a single-crystal iron chalcogenide FeSe superconductor: Evidence of symmetry-breakdown nematicity and additional ultrafast Dirac cone-like carriers. Phys. Rev. B 2014, 90, 144516. [Google Scholar] [CrossRef]
- Knöner, S.; Zielke, D.; Köhler, S.; Wolf, B.; Wolf, T.; Wang, L.; Böhmer, A.; Meingast, C.; Lang, M. Resistivity and magnetoresistance of FeSe single crystals under helium-gas pressure. Phys. Rev. B 2015, 91, 174510. [Google Scholar] [CrossRef]
- Sun, Y.; Yamada, T.; Pyon, S.; Tamegai, T. Structural-transition-induced quasi-two-dimensional Fermi surface in FeSe. Phys. Rev. B 2016, 94, 134505. [Google Scholar] [CrossRef]
- Sun, Y.; Pyon, S.; Tamegai, T. Electron carriers with possible Dirac-cone-like dispersion in FeSe1−xSx (x = 0 and 0.14) single crystals triggered by structural transition. Phys. Rev. B 2016, 93, 104502. [Google Scholar] [CrossRef]
- Terashima, T.; Kikugawa, N.; Kasahara, S.; Watashige, T.; Matsuda, Y.; Shibauchi, T.; Uji, S. Magnetotransport study of the pressure-induced antiferromagnetic phase in FeSe. Phys. Rev. B 2016, 93, 180503. [Google Scholar] [CrossRef]
- Watson, M.D.; Yamashita, T.; Kasahara, S.; Knafo, W.; Nardone, M.; Béard, J.; Hardy, F.; McCollam, A.; Narayanan, A.; Blake, S.F.; et al. Dichotomy between the Hole and Electron Behavior in Multiband Superconductor FeSe Probed by Ultrahigh Magnetic Fields. Phys. Rev. Lett. 2015, 115, 027006. [Google Scholar] [CrossRef] [PubMed]
- Ovchenkov, Y.A.; Chareev, D.A.; Kulbachinskii, V.A.; Kytin, V.G.; Presnov, D.E.; Volkova, O.S.; Vasiliev, A.N. Highly mobile carriers in iron-based superconductors. Supercond. Sci. Technol. 2017, 30, 035017. [Google Scholar] [CrossRef]
- Scherer, D.D.; Jacko, A.C.; Friedrich, C.; Şaşıoğlu, E.; Blügel, S.; Valentí, R.; Andersen, B.M. Interplay of nematic and magnetic orders in FeSe under pressure. Phys. Rev. B 2017, 95, 094504. [Google Scholar] [CrossRef]
- Jiang, K.; Hu, J.; Ding, H.; Wang, Z. Interatomic Coulomb interaction and electron nematic bond order in FeSe. Phys. Rev. B 2016, 93, 115138. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Vafek, O. Distinguishing spin-orbit coupling and nematic order in the electronic spectrum of iron-based superconductors. Phys. Rev. B 2014, 90, 214514. [Google Scholar] [CrossRef]
- Christensen, M.H.; Fernandes, R.M.; Chubukov, A.V. Orbital transmutation and the electronic spectrum of FeSe in the nematic phase. Phys. Rev. Res. 2020, 2, 013015. [Google Scholar] [CrossRef]
- Long, X.; Zhang, S.; Wang, F.; Liu, Z. A first-principle perspective on electronic nematicity in FeSe. npj Quantum Mater. 2020, 5, 50. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, L.; He, S.; He, J.; Liu, D.; Mou, D.; Shen, B.; Hu, Y.; Huang, J.; Zhou, X.J. Electronic structure and superconductivity of FeSe-related superconductors. J. Phys. Condens. Matter 2015, 27, 183201. [Google Scholar] [CrossRef]
- Pustovit, Y.V.; Kordyuk, A.A. Metamorphoses of electronic structure of FeSe-based superconductors (Review Article). Low Temp. Phys. 2016, 42, 995. [Google Scholar] [CrossRef]
- Borisenko, S.V.; Evtushinsky, D.V.; Liu, Z.H.; Morozov, I.; Kappenberger, R.; Wurmehl, S.; Büchner, B.; Yaresko, A.N.; Kim, T.K.; Hoesch, M.; et al. Direct observation of spin-orbit coupling in iron-based superconductors. Nat. Phys. 2016, 12, 311–317. [Google Scholar] [CrossRef]
- Watson, M.D.; Haghighirad, A.A.; Takita, H.; Mansuer, W.; Iwasawa, H.; Schwier, E.F.; Ino, A.; Hoesch, M. Shifts and Splittings of the Hole Bands in the Nematic Phase of FeSe. J. Phys. Soc. Jpn. 2017, 86, 053703. [Google Scholar] [CrossRef]
- Rhodes, L.C.; Watson, M.D.; Haghighirad, A.A.; Eschrig, M.; Kim, T.K. Strongly enhanced temperature dependence of the chemical potential in FeSe. Phys. Rev. B 2017, 95, 195111. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kreisel, A.; Hirschfeld, P.J.; Andersen, B.M. Model of Electronic Structure and Superconductivity in Orbitally Ordered FeSe. Phys. Rev. Lett. 2015, 115, 026402. [Google Scholar] [CrossRef] [PubMed]
- Kreisel, A.; Andersen, B.M.; Sprau, P.O.; Kostin, A.; Davis, J.C.S.; Hirschfeld, P.J. Orbital selective pairing and gap structures of iron-based superconductors. Phys. Rev. B 2017, 95, 174504. [Google Scholar] [CrossRef]
- Suzuki, Y.; Shimojima, T.; Sonobe, T.; Nakamura, A.; Sakano, M.; Tsuji, H.; Omachi, J.; Yoshioka, K.; Kuwata-Gonokami, M.; Watashige, T.; et al. Momentum-dependent sign inversion of orbital order in superconducting FeSe. Phys. Rev. B 2015, 92, 205117. [Google Scholar] [CrossRef]
- Watson, M.D.; Kim, T.K.; Rhodes, L.C.; Eschrig, M.; Hoesch, M.; Haghighirad, A.A.; Coldea, A.I. Evidence for unidirectional nematic bond ordering in FeSe. Phys. Rev. B 2016, 94, 201107. [Google Scholar] [CrossRef]
- Fedorov, A.; Yaresko, A.; Kim, T.K.; Kushnirenko, Y.; Haubold, E.; Wolf, T.; Hoesch, M.; Grüneis, A.; Büchner, B.; Borisenko, S.V. Effect of nematic ordering on electronic structure of FeSe. Sci. Rep. 2016, 6, 36834. [Google Scholar] [CrossRef]
- Shimojima, T.; Suzuki, Y.; Sonobe, T.; Nakamura, A.; Sakano, M.; Omachi, J.; Yoshioka, K.; Kuwata-Gonokami, M.; Ono, K.; Kumigashira, H.; et al. Lifting of xz / yz orbital degeneracy at the structural transition in detwinned FeSe. Phys. Rev. B 2014, 90, 121111. [Google Scholar] [CrossRef]
- Watson, M.D.; Haghighirad, A.A.; Rhodes, L.C.; Hoesch, M.; Kim, T.K. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe. New J. Phys. 2017, 19, 103021. [Google Scholar] [CrossRef]
- Rhodes, L.C.; Watson, M.D.; Haghighirad, A.A.; Evtushinsky, D.V.; Eschrig, M.; Kim, T.K. Scaling of the superconducting gap with orbital character in FeSe. Phys. Rev. B 2018, 98, 180503. [Google Scholar] [CrossRef]
- Rhodes, L.C.; Watson, M.D.; Haghighirad, A.A.; Evtushinsky, D.V.; Kim, T.K. Revealing the single electron pocket of FeSe in a single orthorhombic domain. Phys. Rev. B 2020, 101, 235128. [Google Scholar] [CrossRef]
- Huh, S.S.; Seo, J.J.; Kim, B.S.; Cho, S.H.; Jung, J.K.; Kim, S.; Kwon, C.I.; Kim, J.S.; Koh, Y.Y.; Kyung, W.S.; et al. Absence of Y-pocket in 1-Fe Brillouin zone and reversed orbital occupation imbalance in FeSe. Commun. Phys. 2020, 3, 52. [Google Scholar] [CrossRef]
- Yi, M.; Pfau, H.; Zhang, Y.; He, Y.; Wu, H.; Chen, T.; Ye, Z.R.; Hashimoto, M.; Yu, R.; Si, Q.; et al. Nematic Energy Scale and the Missing Electron Pocket in FeSe. Phys. Rev. X 2019, 9, 041049. [Google Scholar] [CrossRef]
- Li, C.; Wu, X.; Wang, L.; Liu, D.; Cai, Y.; Wang, Y.; Gao, Q.; Song, C.; Huang, J.; Dong, C.; et al. Spectroscopic Evidence for an Additional Symmetry Breaking in the Nematic State of FeSe Superconductor. Phys. Rev. X 2020, 10, 031033. [Google Scholar] [CrossRef]
- Watson, M.D.; Kim, T.K.; Haghighirad, A.A.; Davies, N.R.; McCollam, A.; Narayanan, A.; Blake, S.F.; Chen, Y.L.; Ghannadzadeh, S.; Schofield, A.J.; et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B 2015, 91, 155106. [Google Scholar] [CrossRef]
- Kostin, A.; Sprau, P.O.; Kreisel, A.; Chong, Y.X.; Böhmer, A.E.; Canfield, P.C.; Hirschfeld, P.J.; Andersen, B.M.; Davis, J.C.S. Imaging orbital-selective quasiparticles in the Hund’s metal state of FeSe. Nat. Mater. 2018, 17, 869–874. [Google Scholar] [CrossRef]
- Kushnirenko, Y.S.; Fedorov, A.V.; Haubold, E.; Thirupathaiah, S.; Wolf, T.; Aswartham, S.; Morozov, I.; Kim, T.K.; Büchner, B.; Borisenko, S.V. Three-dimensional superconducting gap in FeSe from angle-resolved photoemission spectroscopy. Phys. Rev. B 2018, 97, 180501. [Google Scholar] [CrossRef]
- Nakayama, K.; Miyata, Y.; Phan, G.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor. Phys. Rev. Lett. 2014, 113, 237001. [Google Scholar] [CrossRef]
- Pfau, H.; Chen, S.D.; Yi, M.; Hashimoto, M.; Rotundu, C.R.; Palmstrom, J.C.; Chen, T.; Dai, P.C.; Straquadine, J.; Hristov, A.; et al. Momentum Dependence of the Nematic Order Parameter in Iron-Based Superconductors. Phys. Rev. Lett. 2019, 123, 066402. [Google Scholar] [CrossRef]
- Terashima, T.; Kikugawa, N.; Kiswandhi, A.; Choi, E.S.; Brooks, J.S.; Kasahara, S.; Watashige, T.; Ikeda, H.; Shibauchi, T.; Matsuda, Y.; et al. Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements. Phys. Rev. B 2014, 90, 144517. [Google Scholar] [CrossRef]
- Audouard, A.; Duc, F.; Drigo, L.; Toulemonde, P.; Karlsson, S.; Strobel, P.; Sulpice, A. Quantum oscillations and upper critical magnetic field of the iron-based superconductor FeSe. Europhys. Lett. 2015, 109, 27003. [Google Scholar] [CrossRef][Green Version]
- Lin, J.Y.; Hsieh, Y.S.; Chareev, D.A.; Vasiliev, A.N.; Parsons, Y.; Yang, H.D. Coexistence of isotropic and extended s-wave order parameters in FeSe as revealed by low-temperature specific heat. Phys. Rev. B 2011, 84, 220507. [Google Scholar] [CrossRef]
- Hardy, F.; He, M.; Wang, L.; Wolf, T.; Schweiss, P.; Merz, M.; Barth, M.; Adelmann, P.; Eder, R.; Haghighirad, A.A.; et al. Calorimetric evidence of nodal gaps in the nematic superconductor FeSe. Phys. Rev. B 2019, 99, 035157. [Google Scholar] [CrossRef]
- Zhang, P.; Qian, T.; Richard, P.; Wang, X.P.; Miao, H.; Lv, B.Q.; Fu, B.B.; Wolf, T.; Meingast, C.; Wu, X.X.; et al. Observation of two distinct dxz/dyz band splittings in FeSe. Phys. Rev. B 2015, 91, 214503. [Google Scholar] [CrossRef]
- Kasahara, S.; Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Yamashita, T.; Shimoyama, Y.; Mizukami, Y.; Endo, R.; Ikeda, H.; Aoyama, K.; et al. Field-induced superconducting phase of FeSe in the BCS-BEC cross-over. Proc. Natl. Acad. Sci. USA 2014, 111, 16309. [Google Scholar] [CrossRef] [PubMed]
- Gallais, Y.; Fernandes, R.M.; Paul, I.; Chauvière, L.; Yang, Y.X.; Méasson, M.A.; Cazayous, M.; Sacuto, A.; Colson, D.; Forget, A. Observation of Incipient Charge Nematicity in Ba(Fe1−xCox)2As2. Phys. Rev. Lett. 2013, 111, 267001. [Google Scholar] [CrossRef]
- Gallais, Y.; Paul, I.; Chauvière, L.; Schmalian, J. Nematic Resonance in the Raman Response of Iron-Based Superconductors. Phys. Rev. Lett. 2016, 116, 017001. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.F.; Richard, P.; Ding, H.; Wen, H.H.; Tan, G.; Wang, M.; Zhang, C.; Dai, P.; Blumberg, G. Superconductivity and electronic fluctuations in Ba1−xKxFe2As2 studied by Raman scattering. Phys. Rev. B 2017, 95, 085125. [Google Scholar] [CrossRef]
- Thorsmølle, V.K.; Khodas, M.; Yin, Z.P.; Zhang, C.; Carr, S.V.; Dai, P.; Blumberg, G. Critical quadrupole fluctuations and collective modes in iron pnictide superconductors. Phys. Rev. B 2016, 93, 054515. [Google Scholar] [CrossRef]
- Gallais, Y.; Paul, I. Charge nematicity and electronic Raman scattering in iron-based superconductors. C. R. Phys. 2016, 17, 113–139. [Google Scholar] [CrossRef]
- Shimojima, T.; Suzuki, Y.; Nakamura, A.; Mitsuishi, N.; Kasahara, S.; Shibauchi, T.; Matsuda, Y.; Ishida, Y.; Shin, S.; Ishizaka, K. Ultrafast nematic-orbital excitation in FeSe. Nat. Commun. 2019, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Fanfarillo, L.; Kopić, D.; Sterzi, A.; Manzoni, G.; Crepaldi, A.; Tsurkan, V.; Croitori, D.; Deisenhofer, J.; Parmigiani, F.; Capone, M.; et al. Photoinduced nematic state in FeSe0.4Te0.6. arXiv 2019, arXiv:1905.12448. [Google Scholar]
- Imai, T.; Ahilan, K.; Ning, F.L.; McQueen, T.M.; Cava, R.J. Why Does Undoped FeSe Become a High-Tc Superconductor under Pressure? Phys. Rev. Lett. 2009, 102, 177005. [Google Scholar] [CrossRef]
- Baek, S.H.; Efremov, D.V.; Ok, J.M.; Kim, J.S.; van den Brink, J.; Büchner, B. Nematicity and in-plane anisotropy of superconductivity in β-FeSe detected by 77Se nuclear magnetic resonance. Phys. Rev. B 2016, 93, 180502. [Google Scholar] [CrossRef]
- Xing, R.Q.; Classen, L.; Chubukov, A.V. Orbital order in FeSe: The case for vertex renormalization. Phys. Rev. B 2018, 98, 041108. [Google Scholar] [CrossRef]
- Benfatto, L.; Valenzuela, B.; Fanfarillo, L. Nematic Pairing from Orbital Selective Spin Fluctuations in FeSe. npj Quantum Mater. 2018, 3, 56. [Google Scholar] [CrossRef]
- De’ Medici, L. The Physics of Correlated Insulators, Metals, and Superconductors (Modeling and Simulation Vol. 7); Chapter Hund’s Metals Explained; Forschungszentrum Juelich: Juelich, Germany, 2017; pp. 377–398. [Google Scholar]
- Koch, R.J.; Konstantinova, T.; Abeykoon, M.; Wang, A.; Petrovic, C.; Zhu, Y.; Bozin, E.S.; Billinge, S.J.L. Room temperature local nematicity in FeSe superconductor. Phys. Rev. B 2019, 100, 020501. [Google Scholar] [CrossRef]
- Frandsen, B.A.; Wang, Q.; Wu, S.; Zhao, J.; Birgeneau, R.J. Quantitative characterization of short-range orthorhombic fluctuations in FeSe through pair distribution function analysis. Phys. Rev. B 2019, 100, 020504. [Google Scholar] [CrossRef]
- Steffensen, D.; Kotetes, P.; Paul, I.; Andersen, B.M. Disorder-induced electronic nematicity. Phys. Rev. B 2019, 100, 064521. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Koch, R.; Billinge, S.J.L.; Zunger, A. Understanding Electronic Peculiarities in Tetragonal FeSe as Local Structural Symmetry Breaking. arXiv 2019, arXiv:1911.02670. [Google Scholar]
- McQueen, T.M.; Williams, A.J.; Stephens, P.W.; Tao, J.; Zhu, Y.; Ksenofontov, V.; Casper, F.; Felser, C.; Cava, R.J. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett. 2009, 103, 057002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, Y.; Pan, B.; Hao, Y.; Ma, M.; Zhou, F.; Steffens, P.; Schmalzl, K.; Forrest, T.R.; Abdel-Hafiez, M.; et al. Strong Interplay between Stripe Spin Fluctuations, Nematicity and Superconductivity in FeSe. Nat. Mater. 2016, 15, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.J.; Lai, H.H.; Gong, S.S.; Yu, R.; Dagotto, E.; Si, Q. Quantum transitions of nematic phases in a spin-1 bilinear-biquadratic model and their implications for FeSe. Phys. Rev. Res. 2020, 2, 023359. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, W.J.; Nevidomskyy, A.H. Spin Ferroquadrupolar Order in the Nematic Phase of FeSe. Phys. Rev. Lett. 2016, 116, 247203. [Google Scholar] [CrossRef]
- Glasbrenner, J.K.; Mazin, I.I.; Jeschke, H.O.; Hirschfeld, P.J.; Fernandes, R.M.; Valentí, R. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 2015, 11, 953–958. [Google Scholar] [CrossRef]
- Wang, F.; Kivelson, S.A.; Lee, D.H. Nematicity and quantum paramagnetism in FeSe. Nat. Phys. 2015, 11, 959–963. [Google Scholar] [CrossRef]
- Shishidou, T.; Agterberg, D.F.; Weinert, M. Magnetic fluctuations in single-layer FeSe. Commun. Phys. 2018, 1, 8. [Google Scholar] [CrossRef]
- She, J.H.; Lawler, M.J.; Kim, E.A. Quantum Spin Liquid Intertwining Nematic and Superconducting Order in Fese. Phys. Rev. Lett. 2018, 121, 237002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, Y.; Pan, B.; Zhang, X.; Ikeuchi, K.; Iida, K.; Christianson, A.D.; Walker, H.C.; Adroja, D.T.; Abdel-Hafiez, M.; et al. Magnetic ground state of FeSe. Nat. Commun. 2016, 7, 12182. [Google Scholar] [CrossRef]
- Kotegawa, H.; Fujita, M. Magnetic excitations in iron chalcogenide superconductors. Sci. Technol. Adv. Mater. 2012, 13, 054302. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, A.E.; Arai, T.; Hardy, F.; Hattori, T.; Iye, T.; Wolf, T.; Löhneysen, H.V.; Ishida, K.; Meingast, C. Origin of the Tetragonal-to-Orthorhombic Phase Transition in FeSe: A Combined Thermodynamic and NMR Study of Nematicity. Phys. Rev. Lett. 2015, 114, 027001. [Google Scholar] [CrossRef]
- Vaknin, D. Magnetic nematicity: A debated origin. Nat. Mater. 2016, 15, 131–132. [Google Scholar] [CrossRef]
- Baek, S.H.; Efremov, D.V.; Ok, J.M.; Kim, J.S.; van den Brink, J.; Büchner, B. Orbital-driven nematicity in FeSe. Nat. Mater. 2015, 14, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Ok, J.M.; Kim, J.S.; Aswartham, S.; Morozov, I.; Chareev, D.; Urata, T.; Tanigaki, K.; Tanabe, Y.; Büchner, B.; et al. Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe. npj Quantum Mater. 2020, 5, 8. [Google Scholar] [CrossRef]
- Rahn, M.C.; Ewings, R.A.; Sedlmaier, S.J.; Clarke, S.J.; Boothroyd, A.T. Strong (π,0) spin fluctuations in β-FeSe observed by neutron spectroscopy. Phys. Rev. B 2015, 91, 180501. [Google Scholar] [CrossRef]
- Ma, M.; Bourges, P.; Sidis, Y.; Xu, Y.; Li, S.; Hu, B.; Li, J.; Wang, F.; Li, Y. Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering. Phys. Rev. X 2017, 7, 021025. [Google Scholar] [CrossRef]
- Baum, A.; Ruiz, H.N.; Lazarević, N.; Wang, Y.; Böhm, T.; Hosseinian Ahangharnejhad, R.; Adelmann, P.; Wolf, T.; Popović, Z.V.; Moritz, B.; et al. Frustrated spin order and stripe fluctuations in FeSe. Commun. Phys. 2019, 2, 14. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Y.; Kreisel, A.; Lu, X.; Schneidewind, A.; Qiu, Y.; Park, J.T.; Perring, T.G.; Stewart, J.R.; Cao, H.; et al. Anisotropic spin fluctuations in detwinned FeSe. Nat. Mater. 2019, 18, 709–716. [Google Scholar] [CrossRef]
- Fanfarillo, L.; Benfatto, L.; Valenzuela, B. Orbital mismatch boosting nematic instability in iron-based superconductors. Phys. Rev. B 2018, 97, 121109. [Google Scholar] [CrossRef]
- Kreisel, A.; Andersen, B.M.; Hirschfeld, P.J. Itinerant approach to magnetic neutron scattering of FeSe: Effect of orbital selectivity. Phys. Rev. B 2018, 98, 214518. [Google Scholar] [CrossRef]
- Jiang, Q.; Shi, Y.; Christensen, M.H.; Sanchez, J.; Huang, B.; Lin, Z.; Liu, Z.; Malinowski, P.; Xu, X.; Fernandes, R.M.; et al. Nematic Fluctuations in an Orbital Selective Superconductor Fe1+yTe1−xSex. arXiv 2020, arXiv:2006.15887. [Google Scholar]
- Kang, J.; Fernandes, R.M.; Chubukov, A. Superconductivity in FeSe: The Role of Nematic Order. Phys. Rev. Lett. 2018, 120, 267001. [Google Scholar] [CrossRef]
- Kreisel, A.; Mukherjee, S.; Hirschfeld, P.J.; Andersen, B.M. Spin excitations in a model of FeSe with orbital ordering. Phys. Rev. B 2015, 92, 224515. [Google Scholar] [CrossRef]
- Yin, Z.P.; Haule, K.; Kotliar, G. Spin dynamics and orbital-antiphase pairing symmetry in iron-based superconductors. Nat. Phys. 2014, 10, 845. [Google Scholar] [CrossRef]
- Chareev, D.; Osadchii, E.; Kuzmicheva, T.; Lin, J.Y.; Kuzmichev, S.; Volkova, O.; Vasiliev, A. Single crystal growth and characterization of tetragonal FeSe1−x superconductors. CrystEngComm 2013, 15, 1989–1993. [Google Scholar] [CrossRef]
- Böhmer, A.E.; Taufour, V.; Straszheim, W.E.; Wolf, T.; Canfield, P.C. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe. Phys. Rev. B 2016, 94, 024526. [Google Scholar] [CrossRef]
- Biswas, P.K.; Kreisel, A.; Wang, Q.; Adroja, D.T.; Hillier, A.D.; Zhao, J.; Khasanov, R.; Orain, J.C.; Amato, A.; Morenzoni, E. Evidence of nodal gap structure in the basal plane of the FeSe superconductor. Phys. Rev. B 2018, 98, 180501. [Google Scholar] [CrossRef]
- Li, M.; Lee-Hone, N.R.; Chi, S.; Liang, R.; Hardy, W.N.; Bonn, D.A.; Girt, E.; Broun, D.M. Superfluid density and microwave conductivity of FeSe superconductor: Ultra-long-lived quasiparticles and extended s-wave energy gap. New J. Phys. 2016, 18, 082001. [Google Scholar] [CrossRef]
- Teknowijoyo, S.; Cho, K.; Tanatar, M.A.; Gonzales, J.; Böhmer, A.E.; Cavani, O.; Mishra, V.; Hirschfeld, P.J.; Bud’ko, S.L.; Canfield, P.C.; et al. Enhancement of superconducting transition temperature by pointlike disorder and anisotropic energy gap in FeSe single crystals. Phys. Rev. B 2016, 94, 064521. [Google Scholar] [CrossRef]
- Bourgeois-Hope, P.; Chi, S.; Bonn, D.A.; Liang, R.; Hardy, W.N.; Wolf, T.; Meingast, C.; Doiron-Leyraud, N.; Taillefer, L. Thermal Conductivity of the Iron-Based Superconductor FeSe: Nodeless Gap with a Strong Two-Band Character. Phys. Rev. Lett. 2016, 117, 097003. [Google Scholar] [CrossRef]
- Abdel-Hafiez, M.; Ge, J.; Vasiliev, A.N.; Chareev, D.A.; Van de Vondel, J.; Moshchalkov, V.V.; Silhanek, A.V. Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe. Phys. Rev. B 2013, 88, 174512. [Google Scholar] [CrossRef]
- Naidyuk, Y.G.; Kvitnitskaya, O.E.; Gamayunova, N.V.; Bashlakov, D.L.; Tyutrina, L.V.; Fuchs, G.; Hühne, R.; Chareev, D.A.; Vasiliev, A.N. Superconducting gaps in FeSe studied by soft point-contact Andreev reflection spectroscopy. Phys. Rev. B 2017, 96, 094517. [Google Scholar] [CrossRef]
- Yang, H.; Chen, G.; Zhu, X.; Xing, J.; Wen, H.H. BCS-like critical fluctuations with limited overlap of Cooper pairs in FeSe. Phys. Rev. B 2017, 96, 064501. [Google Scholar] [CrossRef]
- Sun, Y.; Kittaka, S.; Nakamura, S.; Sakakibara, T.; Irie, K.; Nomoto, T.; Machida, K.; Chen, J.; Tamegai, T. Gap structure of FeSe determined by angle-resolved specific heat measurements in applied rotating magnetic field. Phys. Rev. B 2017, 96, 220505. [Google Scholar] [CrossRef]
- Wang, L.; Hardy, F.; Wolf, T.; Adelmann, P.; Fromknecht, R.; Schweiss, P.; Meingast, C. Superconductivity-enhanced nematicity and “s+d” gap symmetry in Fe(Se1−xSx). Phys. Status Solidi (b) 2017, 254, 1600153. [Google Scholar] [CrossRef]
- Chen, G.Y.; Zhu, X.; Yang, H.; Wen, H.H. Highly anisotropic superconducting gaps and possible evidence of antiferromagnetic order in FeSe single crystals. Phys. Rev. B 2017, 96, 064524. [Google Scholar] [CrossRef]
- Rößler, S.; Huang, C.L.; Jiao, L.; Koz, C.; Schwarz, U.; Wirth, S. Influence of disorder on the signature of the pseudogap and multigap superconducting behavior in FeSe. Phys. Rev. B 2018, 97, 094503. [Google Scholar] [CrossRef]
- Jiao, L.; Huang, C.L.; Rößler, S.; Koz, C.; Rößler, U.K.; Schwarz, U.; Wirth, S. Superconducting gap structure of FeSe. Sci. Rep. 2017, 7, 44024. [Google Scholar] [CrossRef] [PubMed]
- Watashige, T.; Arsenijević, S.; Yamashita, T.; Terazawa, D.; Onishi, T.; Opherden, L.; Kasahara, S.; Tokiwa, Y.; Kasahara, Y.; Shibauchi, T.; et al. Quasiparticle Excitations in the Superconducting State of FeSe Probed by Thermal Hall Conductivity in the Vicinity of the BCS-BEC Crossover. J. Phys. Soc. Jpn. 2017, 86, 014707. [Google Scholar] [CrossRef]
- Böhmer, A.E.; Meingast, C. Electronic nematic susceptibility of iron-based superconductors. C. R. Phys. 2016, 17, 90–112. [Google Scholar] [CrossRef]
- Watashige, T.; Tsutsumi, Y.; Hanaguri, T.; Kohsaka, Y.; Kasahara, S.; Furusaki, A.; Sigrist, M.; Meingast, C.; Wolf, T.; Löhneysen, H.V.; et al. Evidence for Time-Reversal Symmetry Breaking of the Superconducting State near Twin-Boundary Interfaces in FeSe Revealed by Scanning Tunneling Spectroscopy. Phys. Rev. X 2015, 5, 031022. [Google Scholar] [CrossRef]
- Mishra, V.; Boyd, G.R.; Graser, S.; Maier, T.; Hirschfeld, P.J.; Scalapino, D.J. Lifting of nodes by disorder in extended-s-state superconductors: Application to ferropnictides. Phys. Rev. B 2009, 79, 094512. [Google Scholar] [CrossRef]
- Sun, Y.; Park, A.; Pyon, S.; Tamegai, T.; Kitamura, H. Symmetry-unprotected nodes or gap minima in the s++ state of monocrystalline FeSe. Phys. Rev. B 2017, 96, 140505. [Google Scholar] [CrossRef]
- Rømer, A.T.; Hirschfeld, P.J.; Andersen, B.M. Raising the Critical Temperature by Disorder in Unconventional Superconductors Mediated by Spin Fluctuations. Phys. Rev. Lett. 2018, 121, 027002. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Hirschfeld, P.J. Effect of disorder on the competition between nematic and superconducting order in FeSe. New J. Phys. 2016, 18, 103001. [Google Scholar] [CrossRef]
- Sun, Y.; Kittaka, S.; Nakamura, S.; Sakakibara, T.; Zhang, P.; Shin, S.; Irie, K.; Nomoto, T.; Machida, K.; Chen, J.; et al. Disorder-sensitive nodelike small gap in FeSe. Phys. Rev. B 2018, 98, 064505. [Google Scholar] [CrossRef]
- Martiny, J.H.J.; Kreisel, A.; Hirschfeld, P.J.; Andersen, B.M. Robustness of a quasiparticle interference test for sign-changing gaps in multiband superconductors. Phys. Rev. B 2017, 95, 184507. [Google Scholar] [CrossRef]
- Chi, S.; Hardy, W.N.; Liang, R.; Dosanjh, P.; Wahl, P.; Burke, S.A.; Bonn, D.A. Determination of the Superconducting Order Parameter from Defect Bound State Quasiparticle Interference. arXiv 2017, arXiv:1710.09089. [Google Scholar]
- Chi, S.; Hardy, W.N.; Liang, R.; Dosanjh, P.; Wahl, P.; Burke, S.A.; Bonn, D.A. Extracting phase information about the superconducting order parameter from defect bound states. arXiv 2017, arXiv:1710.09088. [Google Scholar]
- Dalla Torre, E.G.; He, Y.; Demler, E. Holographic maps of quasiparticle interference. Nat. Phys. 2016, 12, 1052–1056. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Q.; Chen, X.; Gu, Q.; Yang, H.; Du, Z.; Zhu, X.; Wang, E.; Wang, Q.H.; Wen, H.H. Direct visualization of sign-reversal s± superconducting gaps in FeTe0.55Se0.45. Phys. Rev. B 2019, 99, 014507. [Google Scholar] [CrossRef]
- Song, C.L.; Wang, Y.L.; Jiang, Y.P.; Wang, L.; He, K.; Chen, X.; Hoffman, J.E.; Ma, X.C.; Xue, Q.K. Suppression of Superconductivity by Twin Boundaries in FeSe. Phys. Rev. Lett. 2012, 109, 137004. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.H.; Song, C.L.; Chen, X.; Ma, X.; Xue, Q.K.; Wu, C. Anisotropic vortex lattice structures in the FeSe superconductor. Phys. Rev. B 2012, 85, 104510. [Google Scholar] [CrossRef]
- Song, C.L.; Wang, Y.L.; Cheng, P.; Jiang, Y.P.; Li, W.; Zhang, T.; Li, Z.; He, K.; Wang, L.; Jia, J.F.; et al. Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor. Science 2011, 332, 1410–1413. [Google Scholar] [CrossRef]
- Xu, H.C.; Niu, X.H.; Xu, D.F.; Jiang, J.; Yao, Q.; Chen, Q.Y.; Song, Q.; Abdel-Hafiez, M.; Chareev, D.A.; Vasiliev, A.N.; et al. Highly Anisotropic and Twofold Symmetric Superconducting Gap in Nematically Ordered FeSe0.93S0.07. Phys. Rev. Lett. 2016, 117, 157003. [Google Scholar] [CrossRef]
- Hashimoto, T.; Ota, Y.; Yamamoto, H.Q.; Suzuki, Y.; Shimojima, T.; Watanabe, S.; Chen, C.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nat. Commun. 2018, 9, 282. [Google Scholar] [CrossRef]
- Jiao, L.; Rößler, S.; Koz, C.; Schwarz, U.; Kasinathan, D.; Rößler, U.K.; Wirth, S. Impurity-induced bound states inside the superconducting gap of FeSe. Phys. Rev. B 2017, 96, 094504. [Google Scholar] [CrossRef]
- Norman, M.R.; Randeria, M.; Ding, H.; Campuzano, J.C. Phenomenological models for the gap anisotropy of Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission spectroscopy. Phys. Rev. B 1995, 52, 615–622. [Google Scholar] [CrossRef]
- Wang, Y.; Kreisel, A.; Zabolotnyy, V.B.; Borisenko, S.V.; Büchner, B.; Maier, T.A.; Hirschfeld, P.J.; Scalapino, D.J. Superconducting gap in LiFeAs from three-dimensional spin-fluctuation pairing calculations. Phys. Rev. B 2013, 88, 174516. [Google Scholar] [CrossRef]
- Ahn, F.; Eremin, I.; Knolle, J.; Zabolotnyy, V.B.; Borisenko, S.V.; Büchner, B.; Chubukov, A.V. Superconductivity from repulsion in LiFeAs: Novel s-wave symmetry and potential time-reversal symmetry breaking. Phys. Rev. B 2014, 89, 144513. [Google Scholar] [CrossRef]
- Saito, T.; Onari, S.; Yamakawa, Y.; Kontani, H.; Borisenko, S.V.; Zabolotnyy, V.B. Reproduction of experimental gap structure in LiFeAs based on orbital-spin fluctuation theory: s++-wave, s±-wave, and hole-s±-wave states. Phys. Rev. B 2014, 90, 035104. [Google Scholar] [CrossRef]
- Liu, D.; Li, C.; Huang, J.; Lei, B.; Wang, L.; Wu, X.; Shen, B.; Gao, Q.; Zhang, Y.; Liu, X.; et al. Orbital Origin of Extremely Anisotropic Superconducting Gap in Nematic Phase of FeSe Superconductor. Phys. Rev. X 2018, 8, 031033. [Google Scholar] [CrossRef]
- De Medici, L. Iron-Based Superconductivity, Weak and Strong Correlations in Fe Superconductors; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Z.K.; Zhang, Y.; Yu, R.; Zhu, J.X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; et al. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun. 2015, 6, 7777. [Google Scholar] [CrossRef]
- Fanfarillo, L.; Giovannetti, G.; Capone, M.; Bascones, E. Nematicity at the Hund’s metal crossover in iron superconductors. Phys. Rev. B 2017, 95, 144511. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, J.X.; Si, Q. Orbital Selectivity Enhanced by Nematic Order in FeSe. Phys. Rev. Lett. 2018, 121, 227003. [Google Scholar] [CrossRef]
- Hu, H.; Yu, R.; Nica, E.M.; Zhu, J.X.; Si, Q. Orbital-selective superconductivity in the nematic phase of FeSe. Phys. Rev. B 2018, 98, 220503. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Hirschfeld, P.J.; Maier, T.A.; Scalapino, D.J. Effects of momentum-dependent quasiparticle renormalization on the gap structure of iron-based superconductors. Phys. Rev. B 2020, 101, 174509. [Google Scholar] [CrossRef]
- Cercellier, H.; Rodière, P.; Toulemonde, P.; Marcenat, C.; Klein, T. Influence of the quasiparticle spectral weight in FeSe on spectroscopic, magnetic, and thermodynamic properties. Phys. Rev. B 2019, 100, 104516. [Google Scholar] [CrossRef]
- Rhodes, L.C.; Watson, M.D.; Kim, T.K.; Eschrig, M. kz Selective Scattering within Quasiparticle Interference Measurements of FeSe. Phys. Rev. Lett. 2019, 123, 216404. [Google Scholar] [CrossRef]
- Uemura, Y.J.; Luke, G.M.; Sternlieb, B.J.; Brewer, J.H.; Carolan, J.F.; Hardy, W.N.; Kadono, R.; Kempton, J.R.; Kiefl, R.F.; Kreitzman, S.R.; et al. Universal Correlations between Tc and (Carrier Density over Effective Mass) in High-Tc Cuprate Superconductors. Phys. Rev. Lett. 1989, 62, 2317–2320. [Google Scholar] [CrossRef]
- Hanaguri, T.; Kasahara, S.; Böker, J.; Eremin, I.; Shibauchi, T.; Matsuda, Y. Quantum Vortex Core and Missing Pseudogap in the Multiband BCS-BEC Crossover Superconductor FeSe. Phys. Rev. Lett. 2019, 122, 077001. [Google Scholar] [CrossRef] [PubMed]
- Chubukov, A.V.; Khodas, M.; Fernandes, R.M. Magnetism, Superconductivity, and Spontaneous Orbital Order in Iron-Based Superconductors: Which Comes First and Why? Phys. Rev. X 2016, 6, 041045. [Google Scholar] [CrossRef]
- Rinott, S.; Chashka, K.B.; Ribak, A.; Rienks, E.D.L.; Taleb-Ibrahimi, A.; Le Fevre, P.; Bertran, F.; Randeria, M.; Kanigel, A. Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+ySexTe1−x: An angle-resolved photoemission study. Sci. Adv. 2017, 3, e1602372. [Google Scholar] [CrossRef]
- Lubashevsky, Y.; Lahoud, E.; Chashka, K.; Podolsky, D.; Kanigel, A. Shallow pockets and very strong coupling superconductivity in FeSexTe1−x. Nat. Phys. 2012, 8, 309–312. [Google Scholar] [CrossRef]
- Okazaki, K.; Ito, Y.; Ota, Y.; Kotani, Y.; Shimojima, T.; Kiss, T.; Watanabe, S.; Chen, C.T.; Niitaka, S.; Hanaguri, T.; et al. Superconductivity in an electron band just above the Fermi level: Possible route to BCS-BEC superconductivity. Sci. Rep. 2014, 4, 4109. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, M.M. Effect of gap anisotropy on the spin resonance peak in the superconducting state of iron-based materials. Phys. Rev. B 2018, 98, 104510. [Google Scholar] [CrossRef]
- Maier, T.A.; Graser, S.; Scalapino, D.J.; Hirschfeld, P. Neutron scattering resonance and the iron-pnictide superconducting gap. Phys. Rev. B 2009, 79, 134520. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, K.; Zhang, Y.; Liu, C.; Liu, Y.; Wang, Z.; Wang, J. Atomic line defects and zero-energy end states in monolayer Fe(Te,Se) high-temperature superconductors. Nat. Phys. 2020, 16, 536–540. [Google Scholar] [CrossRef]
- Yu, R.; Si, Q. Antiferroquadrupolar and Ising-Nematic Orders of a Frustrated Bilinear-Biquadratic Heisenberg Model and Implications for the Magnetism of FeSe. Phys. Rev. Lett. 2015, 115, 116401. [Google Scholar] [CrossRef]
- Margadonna, S.; Takabayashi, Y.; Ohishi, Y.; Mizuguchi, Y.; Takano, Y.; Kagayama, T.; Nakagawa, T.; Takata, M.; Prassides, K. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K). Phys. Rev. B 2009, 80, 064506. [Google Scholar] [CrossRef]
- Medvedev, S.; McQueen, T.M.; Troyan, I.A.; Palasyuk, T.; Eremets, M.I.; Cava, R.J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G.; et al. Electronic and magnetic phase diagram of β-Fe1.01 with superconductivity at 36.7 K under pressure. Nat. Mater. 2009, 8, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Zhang, Y.; Sinogeikin, S.; Xiao, Y.; Kumar, S.; Chow, P.; Cornelius, A.L.; Chen, C. Crystal and Electronic Structure of FeSe at High Pressure and Low Temperature. J. Phys. Chem. B 2010, 114, 12597–12606. [Google Scholar] [CrossRef] [PubMed]
- Bendele, M.; Amato, A.; Conder, K.; Elender, M.; Keller, H.; Klauss, H.H.; Luetkens, H.; Pomjakushina, E.; Raselli, A.; Khasanov, R. Pressure Induced Static Magnetic Order in Superconducting FeSe1−x. Phys. Rev. Lett. 2010, 104, 087003. [Google Scholar] [CrossRef] [PubMed]
- Terashima, T.; Kikugawa, N.; Kasahara, S.; Watashige, T.; Shibauchi, T.; Matsuda, Y.; Wolf, T.; Böhmer, A.E.; Hardy, F.; Meingast, C.; et al. Pressure-Induced Antiferromagnetic Transition and Phase Diagram in FeSe. J. Phys. Soc. Jpn. 2015, 84, 063701. [Google Scholar] [CrossRef]
- Sun, J.P.; Matsuura, K.; Ye, G.Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nat. Commun. 2016, 7, 12146. [Google Scholar] [CrossRef]
- Gati, E.; Böhmer, A.E.; Bud’ko, S.L.; Canfield, P.C. Bulk Superconductivity and Role of Fluctuations in the Iron-Based Superconductor FeSe at High Pressures. Phys. Rev. Lett. 2019, 123, 167002. [Google Scholar] [CrossRef]
- Kothapalli, K.; Böhmer, A.E.; Jayasekara, W.T.; Ueland, B.G.; Das, P.; Sapkota, A.; Taufour, V.; Xiao, Y.; Alp, E.E.; Bud’ko, S.L.; et al. Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe. Nat. Commun. 2016, 7, 12728. [Google Scholar] [CrossRef]
- Matsuura, K.; Mizukami, Y.; Arai, Y.; Sugimura, Y.; Maejima, N.; Machida, A.; Watanuki, T.; Fukuda, T.; Yajima, T.; Hiroi, Z.; et al. Maximizing Tc by tuning nematicity and magnetism in FeSe1−xSx superconductors. Nat. Commun. 2017, 8, 1143. [Google Scholar] [CrossRef]
- Sato, Y.; Kasahara, S.; Taniguchi, T.; Xing, X.; Kasahara, Y.; Tokiwa, Y.; Yamakawa, Y.; Kontani, H.; Shibauchi, T.; Matsuda, Y. Abrupt change of the superconducting gap structure at the nematic critical point in FeSe1−xSx. Proc. Natl. Acad. Sci. USA 2018, 115, 1227–1231. [Google Scholar] [CrossRef]
- Hanaguri, T.; Niitaka, S.; Kuroki, K.; Takagi, H. Unconventional s-Wave Superconductivity in Fe(Se,Te). Science 2010, 328, 474–476. [Google Scholar] [CrossRef]
- Licciardello, S.; Buhot, J.; Lu, J.; Ayres, J.; Kasahara, S.; Matsuda, Y.; Shibauchi, T.; Hussey, N.E. Electrical resistivity across a nematic quantum critical point. Nature 2019, 567, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, S.; Matsuura, K.; Ishida, K.; Wang, H.; Mizukami, Y.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Shibauchi, T. Nematic quantum critical point without magnetism in FeSe1−xSx superconductors. Proc. Natl. Acad. Sci. USA 2016, 113, 8139–8143. [Google Scholar] [CrossRef]
- Acharya, S.; Pashov, D.; van Schilfgaarde, M. Role of nematicity in controlling spin fluctuations and superconducting Tc in bulk FeSe. arXiv 2020, arXiv:2005.07729. [Google Scholar]
- Paul, I.; Garst, M. Lattice Effects on Nematic Quantum Criticality in Metals. Phys. Rev. Lett. 2017, 118, 227601. [Google Scholar] [CrossRef] [PubMed]
- Labat, D.; Kotetes, P.; Andersen, B.M.; Paul, I. Variation of shear moduli across superconducting phase transitions. Phys. Rev. B 2020, 101, 144502. [Google Scholar] [CrossRef]
- Chen, X.; Maiti, S.; Fernandes, R.M.; Hirschfeld, P.J. Nematicity and Superconductivity: Competition vs. Cooperation. arXiv 2020, arXiv:2004.13134. [Google Scholar]
- Watson, M.D.; Kim, T.K.; Haghighirad, A.A.; Blake, S.F.; Davies, N.R.; Hoesch, M.; Wolf, T.; Coldea, A.I. Suppression of orbital ordering by chemical pressure in FeSe1−xSx. Phys. Rev. B 2015, 92, 121108. [Google Scholar] [CrossRef]
- Coldea, A.I.; Blake, S.F.; Kasahara, S.; Haghighirad, A.A.; Watson, M.D.; Knafo, W.; Choi, E.S.; McCollam, A.; Reiss, P.; Yamashita, T.; et al. Evolution of the low-temperature Fermi surface of superconducting FeSe1−xSx across a nematic phase transition. npj Quantum Mater. 2019, 4, 2. [Google Scholar] [CrossRef]
- Hanaguri, T.; Iwaya, K.; Kohsaka, Y.; Machida, T.; Watashige, T.; Kasahara, S.; Shibauchi, T.; Matsuda, Y. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx. Sci. Adv. 2018, 4, eaar6419. [Google Scholar] [CrossRef]
- Reiss, P.; Graf, D.; Haghighirad, A.A.; Knafo, W.; Drigo, L.; Bristow, M.; Schofield, A.J.; Coldea, A.I. Quenched nematic criticality and two superconducting domes in an iron-based superconductor. Nat. Phys. 2020, 16, 89–94. [Google Scholar] [CrossRef]
- Durst, A.C.; Lee, P.A. Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation in d-wave superconductors. Phys. Rev. B 2000, 62, 1270–1290. [Google Scholar] [CrossRef]
- Mishra, V.; Vorontsov, A.; Hirschfeld, P.J.; Vekhter, I. Theory of thermal conductivity in extended-s state superconductors: Application to ferropnictides. Phys. Rev. B 2009, 80, 224525. [Google Scholar] [CrossRef]
- Setty, C.; Bhattacharyya, S.; Cao, Y.; Kreisel, A.; Hirschfeld, P.J. Topological ultranodal pair states in iron-based superconductors. Nat. Commun. 2020, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Agterberg, D.F.; Brydon, P.M.R.; Timm, C. Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 2017, 118, 127001. [Google Scholar] [CrossRef] [PubMed]
- Brydon, P.M.R.; Agterberg, D.F.; Menke, H.; Timm, C. Bogoliubov Fermi surfaces: General theory, magnetic order, and topology. Phys. Rev. B 2018, 98, 224509. [Google Scholar] [CrossRef]
- Vollhardt, P.D.; Wölfle, P. The Superfluid Phases of 3He; W. Taylor and Francis: Abingdon, UK, 1990. [Google Scholar]
- Setty, C.; Bhattacharyya, S.; Cao, Y.; Kreisel, A.; Hirschfeld, P.J. Bogoliubov Fermi surfaces in spin- systems: Model Hamiltonians and experimental consequences. Phys. Rev. B 2020, 102, 064504. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Li, Z.; Zhang, W.H.; Zhang, Z.C.; Zhang, J.S.; Li, W.; Ding, H.; Ou, Y.B.; Deng, P.; Chang, K.; et al. Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402. [Google Scholar] [CrossRef]
- Song, C.L.; Wang, Y.L.; Jiang, Y.P.; Li, Z.; Wang, L.; He, K.; Chen, X.; Ma, X.C.; Xue, Q.K. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B 2011, 84, 020503. [Google Scholar] [CrossRef]
- Liu, X.; Liu, D.; Zhang, W.; He, J.; Zhao, L.; He, S.; Mou, D.; Li, F.; Tang, C.; Li, Z.; et al. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films. Nat. Commun. 2014, 5, 5047. [Google Scholar] [CrossRef]
- He, S.; He, J.; Zhang, W.; Zhao, L.; Liu, D.; Liu, X.; Mou, D.; Ou, Y.B.; Wang, Q.Y.; Li, Z.; et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 2013, 12, 605–610. [Google Scholar] [CrossRef]
- Shigekawa, K.; Nakayama, K.; Kuno, M.; Phan, G.N.; Owada, K.; Sugawara, K.; Takahashi, T.; Sato, T. Dichotomy of superconductivity between monolayer FeS and FeSe. Proc. Natl. Acad. Sci. USA 2019, 116, 24470–24474. [Google Scholar] [CrossRef] [PubMed]
- Eich, A.; Rollfing, N.; Arnold, F.; Sanders, C.; Ewen, P.R.; Bianchi, M.; Dendzik, M.; Michiardi, M.; Mi, J.L.; Bremholm, M.; et al. Absence of superconductivity in ultrathin layers of FeSe synthesized on a topological insulator. Phys. Rev. B 2016, 94, 125437. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, W.; Mou, D.; He, J.; Ou, Y.B.; Wang, Q.Y.; Li, Z.; Wang, L.; Zhao, L.; He, S.; et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nat. Commun. 2012, 3, 931. [Google Scholar] [CrossRef] [PubMed]
- Mou, D.; Liu, S.; Jia, X.; He, J.; Peng, Y.; Zhao, L.; Yu, L.; Liu, G.; He, S.; Dong, X.; et al. Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl0.58Rb0.42)Fe1.72Se2 Superconductor. Phys. Rev. Lett. 2011, 106, 107001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liang, A.; Yuan, D.; Hu, Y.; Liu, D.; Huang, J.; He, S.; Shen, B.; Xu, Y.; Liu, X.; et al. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films. Nat. Commun. 2016, 7, 10608. [Google Scholar] [CrossRef]
- Tikhonova, L.V.; Korshunov, M.M. Effect of the Additional Se Layer on the Electronic Structure of Iron-Based Superconductor FeSe/SrTiO3. J. Supercond. Nov. Magn. 2020, 33, 171–176. [Google Scholar] [CrossRef]
- Hao, N.; Hu, J. Topological Phases in the Single-Layer FeSe. Phys. Rev. X 2014, 4, 031053. [Google Scholar] [CrossRef]
- Berlijn, T.; Cheng, H.P.; Hirschfeld, P.J.; Ku, W. Doping effects of Se vacancies in monolayer FeSe. Phys. Rev. B 2014, 89, 020501. [Google Scholar] [CrossRef]
- Bang, J.; Li, Z.; Sun, Y.Y.; Samanta, A.; Zhang, Y.Y.; Zhang, W.; Wang, L.; Chen, X.; Ma, X.; Xue, Q.K.; et al. Atomic and electronic structures of single-layer FeSe on SrTiO3(001): The role of oxygen deficiency. Phys. Rev. B 2013, 87, 220503. [Google Scholar] [CrossRef]
- Cao, H.Y.; Tan, S.; Xiang, H.; Feng, D.L.; Gong, X.G. Interfacial effects on the spin density wave in FeSe/SrTiO3 thin films. Phys. Rev. B 2014, 89, 014501. [Google Scholar] [CrossRef]
- Ding, H.; Lv, Y.F.; Zhao, K.; Wang, W.L.; Wang, L.; Song, C.L.; Chen, X.; Ma, X.C.; Xue, Q.K. High-Temperature Superconductivity in Single-Unit-Cell FeSe Films on Anatase TiO2(001). Phys. Rev. Lett. 2016, 117, 067001. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Millis, A.J. Charge transfer and electron-phonon coupling in monolayer FeSe on Nb-doped SrTiO3. Phys. Rev. B 2016, 93, 224506. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Q.; Tang, C.; Liu, C.; Shi, J.; Nie, C.; Zhou, G.; Li, Z.; Zhang, W.; Song, C.L.; et al. Atomically resolved FeSe/SrTiO3(001) interface structure by scanning transmission electron microscopy. 2D Mater. 2016, 3, 024002. [Google Scholar] [CrossRef]
- Zou, K.; Mandal, S.; Albright, S.D.; Peng, R.; Pu, Y.; Kumah, D.; Lau, C.; Simon, G.H.; Dagdeviren, O.E.; He, X.; et al. Role of double TiO2 layers at the interface of FeSe/SrTiO3 superconductors. Phys. Rev. B 2016, 93, 180506. [Google Scholar] [CrossRef]
- Zhao, W.; Li, M.; Chang, C.Z.; Jiang, J.; Wu, L.; Liu, C.; Moodera, J.S.; Zhu, Y.; Chan, M.H.W. Direct imaging of electron transfer and its influence on superconducting pairing at FeSe/SrTiO3 interface. Sci. Adv. 2018, 4, eaao2682. [Google Scholar] [CrossRef]
- Sims, H.; Leonard, D.N.; Birenbaum, A.Y.; Ge, Z.; Berlijn, T.; Li, L.; Cooper, V.R.; Chisholm, M.F.; Pantelides, S.T. Intrinsic interfacial van der Waals monolayers and their effect on the high-temperature superconductor FeSe/SrTiO3. Phys. Rev. B 2019, 100, 144103. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, Y.; Xia, M.; Ye, Z.; Chen, F.; Xie, X.; Peng, R.; Xu, D.; Fan, Q.; Xu, H.; et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640. [Google Scholar] [CrossRef]
- Lee, J.J.; Schmitt, F.T.; Moore, R.G.; Johnston, S.; Cui, Y.T.; Li, W.; Yi, M.; Liu, Z.K.; Hashimoto, M.; Zhang, Y.; et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248. [Google Scholar] [CrossRef]
- Peng, R.; Shen, X.P.; Xie, X.; Xu, H.C.; Tan, S.Y.; Xia, M.; Zhang, T.; Cao, H.Y.; Gong, X.G.; Hu, J.P.; et al. Measurement of an Enhanced Superconducting Phase and a Pronounced Anisotropy of the Energy Gap of a Strained FeSe Single Layer in FeSe/Nb: SrTiO3/KTaO3 Heterostructures Using Photoemission Spectroscopy. Phys. Rev. Lett. 2014, 112, 107001. [Google Scholar] [CrossRef]
- Shikama, N.; Sakishita, Y.; Nabeshima, F.; Katayama, Y.; Ueno, K.; Maeda, A. Enhancement of superconducting transition temperature in electrochemically etched FeSe/LaAlO3 films. Appl. Phys. Express 2020, 13, 083006. [Google Scholar] [CrossRef]
- Ge, J.F.; Liu, Z.L.; Liu, C.; Gao, C.L.; Qian, D.; Xue, Q.K.; Liu, Y.; Jia, J.F. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 2015, 14, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.H.; Sun, Y.; Zhang, J.S.; Li, F.S.; Guo, M.H.; Zhao, Y.F.; Zhang, H.M.; Peng, J.P.; Xing, Y.; Wang, H.C.; et al. Direct Observation of High-Temperature Superconductivity in One-Unit-Cell FeSe Films. Chin. Phys. Lett. 2014, 31, 017401. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Xing, Y.; Li, F.; Zhao, Y.; Xia, Z.; Wang, L.; Ma, X.; Xue, Q.K.; Wang, J. High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 2014, 4, 6040. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Y.H.; Song, Q.; Liu, C.; Peng, R.; Moler, K.; Feng, D.; Wang, Y. Onset of the Meissner effect at 65K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 2015, 60, 1301–1304. [Google Scholar] [CrossRef]
- Shi, X.; Han, Z.Q.; Peng, X.L.; Richard, P.; Qian, T.; Wu, X.X.; Qiu, M.W.; Wang, S.C.; Hu, J.P.; Sun, Y.J.; et al. Enhanced superconductivity accompanying a Lifshitz transition in electron-doped FeSe monolayer. Nat. Commun. 2017, 8, 14988. [Google Scholar] [CrossRef]
- Hossain, M.A.; Mottershead, J.D.F.; Fournier, D.; Bostwick, A.; McChesney, J.L.; Rotenberg, E.; Liang, R.; Hardy, W.N.; Sawatzky, G.A.; Elfimov, I.S.; et al. In situ doping control of the surface of high-temperature superconductors. Nat. Phys. 2008, 4, 527. [Google Scholar] [CrossRef]
- Miyata, Y.; Nakayama, K.; Sugawara, K.; Sato, T.; Takahashi, T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nat. Mater. 2015, 14, 775–779. [Google Scholar] [CrossRef]
- Wen, C.H.P.; Xu, H.C.; Chen, C.; Huang, Z.C.; Lou, X.; Pu, Y.J.; Song, Q.; Xie, B.P.; Abdel-Hafiez, M.; Chareev, D.A.; et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nat. Commun. 2016, 7, 10840. [Google Scholar] [CrossRef]
- Song, C.L.; Zhang, H.M.; Zhong, Y.; Hu, X.P.; Ji, S.H.; Wang, L.; He, K.; Ma, X.C.; Xue, Q.K. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films. Phys. Rev. Lett. 2016, 116, 157001. [Google Scholar] [CrossRef]
- Lei, B.; Cui, J.H.; Xiang, Z.J.; Shang, C.; Wang, N.Z.; Ye, G.J.; Luo, X.G.; Wu, T.; Sun, Z.; Chen, X.H. Evolution of High-Temperature Superconductivity from a Low-Tc Phase Tuned by Carrier Concentration in FeSe Thin Flakes. Phys. Rev. Lett. 2016, 116, 077002. [Google Scholar] [CrossRef]
- Shi, X.; Han, Z.Q.; Richard, P.; Wu, X.X.; Peng, X.L.; Qian, T.; Wang, S.C.; Hu, J.P.; Sun, Y.J.; Ding, H. FeTe1−xSex monolayer films: Towards the realization of high-temperature connate topological superconductivity. Sci. Bull. 2017, 62, 503–507. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, S.; Zhu, X.; Guo, J. Superconductivity enhancement in FeSe/SrTiO3: A review from the perspective of electron–phonon coupling. J. Phys. Condens. Matter 2020, 32, 343003. [Google Scholar] [CrossRef] [PubMed]
- Kulić, M.L.; Zeyher, R. Influence of strong electron correlations on the electron-phonon coupling in high-Tc oxides. Phys. Rev. B 1994, 49, 4395–4398. [Google Scholar] [CrossRef] [PubMed]
- Aperis, A.; Kotetes, P.; Varelogiannis, G.; Oppeneer, P.M. Small-q phonon-mediated unconventional superconductivity in the iron pnictides. Phys. Rev. B 2011, 83, 092505. [Google Scholar] [CrossRef]
- Rademaker, L.; Wang, Y.; Berlijn, T.; Johnston, S. Enhanced superconductivity due to forward scattering in FeSe thin films on SrTiO3 substrates. New J. Phys. 2016, 18, 022001. [Google Scholar] [CrossRef]
- Kulić, M.L.; Dolgov, O.V. The electron-phonon interaction with forward scattering peak is dominant in high Tc superconductors of FeSe films on SrTiO3 (TiO2). New J. Phys. 2017, 19, 013020. [Google Scholar] [CrossRef]
- Aperis, A.; Oppeneer, P.M. Multiband full-bandwidth anisotropic Eliashberg theory of interfacial electron-phonon coupling and high Tc superconductivity in FeSe/SrTiO3. Phys. Rev. B 2018, 97, 060501. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, J.J.; Moore, R.G.; Li, W.; Yi, M.; Hashimoto, M.; Lu, D.H.; Devereaux, T.P.; Lee, D.H.; Shen, Z.X. Superconducting Gap Anisotropy in Monolayer FeSe Thin Film. Phys. Rev. Lett. 2016, 117, 117001. [Google Scholar] [CrossRef]
- Du, Z.; Yang, X.; Lin, H.; Fang, D.; Du, G.; Xing, J.; Yang, H.; Zhu, X.; Wen, H.H. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe. Nat. Commun. 2016, 7, 10565. [Google Scholar] [CrossRef]
- Li, B.; Xing, Z.W.; Huang, G.Q.; Xing, D.Y. Electron-phonon coupling enhanced by the FeSe/SrTiO3 interface. J. Appl. Phys. 2014, 115, 193907. [Google Scholar] [CrossRef]
- Linscheid, A. Electronic properties of the FeSe/STO interface from first-principle calculations. Supercond. Sci. Technol. 2016, 29, 104005. [Google Scholar] [CrossRef]
- Wang, Y.; Linscheid, A.; Berlijn, T.; Johnston, S. Ab initio study of cross-interface electron-phonon couplings in FeSe thin films on SrTiO3 and BaTiO3. Phys. Rev. B 2016, 93, 134513. [Google Scholar] [CrossRef]
- Coh, S.; Cohen, M.L.; Louie, S.G. Large electron-phonon interactions from FeSe phonons in a monolayer. New J. Phys. 2015, 17, 073027. [Google Scholar] [CrossRef]
- Xiang, Y.Y.; Wang, F.; Wang, D.; Wang, Q.H.; Lee, D.H. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys. Rev. B 2012, 86, 134508. [Google Scholar] [CrossRef]
- Wang, F.; Yang, F.; Gao, M.; Lu, Z.Y.; Xiang, T.; Lee, D.H. The electron pairing of KxFe2−ySe2. EPL (Europhys. Lett.) 2011, 93, 57003. [Google Scholar] [CrossRef]
- Maier, T.A.; Graser, S.; Hirschfeld, P.J.; Scalapino, D.J. d-wave pairing from spin fluctuations in the KxFe2−ySe2 superconductors. Phys. Rev. B 2011, 83, 100515. [Google Scholar] [CrossRef]
- Schrodi, F.; Aperis, A.; Oppeneer, P.M. Eliashberg theory for spin fluctuation mediated superconductivity: Application to bulk and monolayer FeSe. Phys. Rev. B 2020, 102, 014502. [Google Scholar] [CrossRef]
- Ge, Z.; Yan, C.; Zhang, H.; Agterberg, D.; Weinert, M.; Li, L. Evidence for d-Wave Superconductivity in Single Layer FeSe/SrTiO3 Probed by Quasiparticle Scattering Off Step Edges. Nano Lett. 2019, 19, 2497–2502. [Google Scholar] [CrossRef]
- Khodas, M.; Chubukov, A.V. Interpocket Pairing and Gap Symmetry in Fe-Based Superconductors with Only Electron Pockets. Phys. Rev. Lett. 2012, 108, 247003. [Google Scholar] [CrossRef]
- Mazin, I.I. Symmetry analysis of possible superconducting states in KxFeySe2 superconductors. Phys. Rev. B 2011, 84, 024529. [Google Scholar] [CrossRef]
- Kreisel, A.; Wang, Y.; Maier, T.A.; Hirschfeld, P.J.; Scalapino, D.J. Spin fluctuations and superconductivity in KxFe2−ySe2. Phys. Rev. B 2013, 88, 094522. [Google Scholar] [CrossRef]
- Day, R.P.; Levy, G.; Michiardi, M.; Zwartsenberg, B.; Zonno, M.; Ji, F.; Razzoli, E.; Boschini, F.; Chi, S.; Liang, R.; et al. Influence of Spin-Orbit Coupling in Iron-Based Superconductors. Phys. Rev. Lett. 2018, 121, 076401. [Google Scholar] [CrossRef] [PubMed]
- Lipscombe, O.J.; Harriger, L.W.; Freeman, P.G.; Enderle, M.; Zhang, C.; Wang, M.; Egami, T.; Hu, J.; Xiang, T.; Norman, M.R.; et al. Anisotropic neutron spin resonance in superconducting BaFe1.9Ni0.1As2. Phys. Rev. B 2010, 82, 064515. [Google Scholar] [CrossRef]
- Scherer, D.D.; Andersen, B.M. Spin-Orbit Coupling and Magnetic Anisotropy in Iron-Based Superconductors. Phys. Rev. Lett. 2018, 121, 037205. [Google Scholar] [CrossRef] [PubMed]
- Korshunov, M.M.; Togushova, Y.N.; Eremin, I.; Hirschfeld, P.J. Spin-Orbit Coupling in Fe-Based Superconductors. J. Supercond. Nov. Magn. 2013, 26, 2873–2874. [Google Scholar] [CrossRef]
- Agterberg, D.F.; Shishidou, T.; O’Halloran, J.; Brydon, P.M.R.; Weinert, M. Resilient Nodeless d-Wave Superconductivity in Monolayer FeSe. Phys. Rev. Lett. 2017, 119, 267001. [Google Scholar] [CrossRef]
- Eugenio, P.M.; Vafek, O. Classification of symmetry derived pairing at the M point in FeSe. Phys. Rev. B 2018, 98, 014503. [Google Scholar] [CrossRef]
- Ng, K.K.; Sigrist, M. The role of spin-orbit coupling for the superconducting state in Sr2RuO4. Europhys. Lett. (EPL) 2000, 49, 473–479. [Google Scholar] [CrossRef]
- Scherer, D.D.; Andersen, B.M. Effects of spin-orbit coupling on spin-fluctuation induced pairing in iron-based superconductors. arXiv 2019, arXiv:1909.01313. [Google Scholar]
- Vafek, O.; Chubukov, A.V. Hund Interaction, Spin-Orbit Coupling, and the Mechanism of Superconductivity in Strongly Hole-Doped Iron Pnictides. Phys. Rev. Lett. 2017, 118, 087003. [Google Scholar] [CrossRef]
- Böker, J.; Volkov, P.A.; Hirschfeld, P.J.; Eremin, I. Quasiparticle interference and symmetry of superconducting order parameter in strongly electron-doped iron-based superconductors. New J. Phys. 2019, 21, 083021. [Google Scholar] [CrossRef]
- Nakayama, T.; Shishidou, T.; Agterberg, D.F. Nodal topology in d-wave superconducting monolayer FeSe. Phys. Rev. B 2018, 98, 214503. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, M.; Liu, Z.K.; Li, W.; Lee, J.J.; Moore, R.G.; Hashimoto, M.; Nakajima, M.; Eisaki, H.; Mo, S.K.; et al. Distinctive orbital anisotropy observed in the nematic state of a FeSe thin film. Phys. Rev. B 2016, 94, 115153. [Google Scholar] [CrossRef]
- Kang, J.; Fernandes, R.M. Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling. Phys. Rev. Lett. 2016, 117, 217003. [Google Scholar] [CrossRef] [PubMed]
- Yamakawa, Y.; Kontani, H. Superconductivity without a hole pocket in electron-doped FeSe: Analysis beyond the Migdal-Eliashberg formalism. Phys. Rev. B 2017, 96, 045130. [Google Scholar] [CrossRef]
- Bang, Y. A shadow gap in the over-doped (Ba1−xKx)Fe2As2 compound. New J. Phys. 2014, 16, 023029. [Google Scholar] [CrossRef]
- Chen, X.; Maiti, S.; Linscheid, A.; Hirschfeld, P.J. Electron pairing in the presence of incipient bands in iron-based superconductors. Phys. Rev. B 2015, 92, 224514. [Google Scholar] [CrossRef]
- Lee, D.H. What Makes the Tc of FeSe/SrTiO3 so High? arXiv 2015, arXiv:1508.02461. [Google Scholar]
- Linscheid, A.; Maiti, S.; Wang, Y.; Johnston, S.; Hirschfeld, P.J. High Tc via Spin Fluctuations from Incipient Bands: Application to Monolayers and Intercalates of FeSe. Phys. Rev. Lett. 2016, 117, 077003. [Google Scholar] [CrossRef]
- Fan, Q.; Zhang, W.H.; Liu, X.; Yan, Y.J.; Ren, M.Q.; Peng, R.; Xu, H.C.; Xie, B.P.; Hu, J.P.; Zhang, T.; et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by scanning tunnelling microscopy. Nat. Phys. 2015, 11, 946–952. [Google Scholar] [CrossRef]
- Liu, C.; Mao, J.; Ding, H.; Wu, R.; Tang, C.; Li, F.; He, K.; Li, W.; Song, C.L.; Ma, X.C.; et al. Extensive impurity-scattering study on the pairing symmetry of monolayer FeSe films on SrTiO3. Phys. Rev. B 2018, 97, 024502. [Google Scholar] [CrossRef]
- Guo, J.; Jin, S.; Wang, G.; Wang, S.; Zhu, K.; Zhou, T.; He, M.; Chen, X. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B 2010, 82, 180520. [Google Scholar] [CrossRef]
- Ding, X.; Fang, D.; Wang, Z.; Yang, H.; Liu, J.; Deng, Q.; Ma, G.; Meng, C.; Hu, Y.; Wen, H.H. Influence of microstructure on superconductivity in KxFe2−ySe2 and evidence for a new parent phase K2Fe7Se8. Nat. Commun. 2013, 4, 1897. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.P.; Qian, T.; Richard, P.; Zhang, P.; Dong, J.; Wang, H.D.; Dong, C.H.; Fang, M.H.; Ding, H. Strong nodeless pairing on separate electron Fermi surface sheets in (Tl, K)Fe1.78Se2 probed by ARPES. EPL (Europhys. Lett.) 2011, 93, 57001. [Google Scholar] [CrossRef]
- Friemel, G.; Park, J.T.; Maier, T.A.; Tsurkan, V.; Li, Y.; Deisenhofer, J.; Krug von Nidda, H.A.; Loidl, A.; Ivanov, A.; Keimer, B.; et al. Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of RbxFe2−ySe2 single crystals. Phys. Rev. B 2012, 85, 140511. [Google Scholar] [CrossRef]
- Xu, M.; Ge, Q.Q.; Peng, R.; Ye, Z.R.; Jiang, J.; Chen, F.; Shen, X.P.; Xie, B.P.; Zhang, Y.; Wang, A.F.; et al. Evidence for an s-wave superconducting gap in KxFe2−ySe2 from angle-resolved photoemission. Phys. Rev. B 2012, 85, 220504. [Google Scholar] [CrossRef]
- Pandey, S.; Chubukov, A.V.; Khodas, M. Spin resonance in AFe2Se2 with s-wave pairing symmetry. Phys. Rev. B 2013, 88, 224505. [Google Scholar] [CrossRef]
- Nica, E.M.; Yu, R.; Si, Q. Orbital-selective pairing and superconductivity in iron selenides. npj Quantum Mater. 2017, 2, 24. [Google Scholar] [CrossRef]
- Burrard-Lucas, M.; Free, D.G.; Sedlmaier, S.J.; Wright, J.D.; Cassidy, S.J.; Hara, Y.; Corkett, A.J.; Lancaster, T.; Baker, P.J.; Blundell, S.J.; et al. Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer. Nat. Mater. 2013, 12, 15–19. [Google Scholar] [CrossRef]
- Scheidt, E.W.; Hathwar, V.R.; Schmitz, D.; Dunbar, A.; Scherer, W.; Mayr, F.; Tsurkan, V.; Deisenhofer, J.; Loidl, A. Superconductivity at Tc = 44 K in Lix Fe2 Se2 (NH3)y. Eur. Phys. J. B 2012, 85, 279. [Google Scholar] [CrossRef]
- Sedlmaier, S.J.; Cassidy, S.J.; Morris, R.G.; Drakopoulos, M.; Reinhard, C.; Moorhouse, S.J.; O’Hare, D.; Manuel, P.; Khalyavin, D.; Clarke, S.J. Ammonia-Rich High-Temperature Superconducting Intercalates of Iron Selenide Revealed through Time-Resolved in Situ X-ray and Neutron Diffraction. J. Am. Chem. Soc. 2014, 136, 630–633. [Google Scholar] [CrossRef] [PubMed]
- Noji, T.; Hatakeda, T.; Hosono, S.; Kawamata, T.; Kato, M.; Koike, Y. Synthesis and post-annealing effects of alkaline-metal-ethylenediamine-intercalated superconductors Ax(C2H8N2)yFe2-zSe2 (A=Li, Na) with Tc=45 K. Phys. C Supercond. Its Appl. 2014, 504, 8–11. [Google Scholar] [CrossRef]
- Krzton-Maziopa, A.; Pomjakushina, E.V.; Pomjakushin, V.Y.; von Rohr, F.; Schilling, A.; Conder, K. Synthesis of a new alkali metal-organic solvent intercalated iron selenide superconductor with Tc≈ 45 K. J. Phys. Condens. Matter 2012, 24, 382202. [Google Scholar] [CrossRef] [PubMed]
- Guterding, D.; Jeschke, H.O.; Hirschfeld, P.J.; Valentí, R. Unified picture of the doping dependence of superconducting transition temperatures in alkali metal/ammonia intercalated FeSe. Phys. Rev. B 2015, 91, 041112. [Google Scholar] [CrossRef]
- Shimizu, M.; Takemori, N.; Guterding, D.; Jeschke, H.O. Importance of the Fermi surface and magnetic interactions for the superconducting dome in electron-doped FeSe intercalates. Phys. Rev. B 2020, 101, 180511. [Google Scholar] [CrossRef]
- Sun, H.; Woodruff, D.N.; Cassidy, S.J.; Allcroft, G.M.; Sedlmaier, S.J.; Thompson, A.L.; Bingham, P.A.; Forder, S.D.; Cartenet, S.; Mary, N.; et al. Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1−xFex(OH)Fe1-ySe. Inorg. Chem. 2015, 54, 1958–1964. [Google Scholar] [CrossRef]
- Lu, X.; Park, J.T.; Zhang, R.; Luo, H.; Nevidomskyy, A.H.; Si, Q.; Dai, P. Nematic spin correlations in the tetragonal state of uniaxial-strained BaFe2-xNixAs2. Science 2014, 345, 657–660. [Google Scholar] [CrossRef]
- Li, W.; Ding, H.; Li, Z.; Deng, P.; Chang, K.; He, K.; Ji, S.; Wang, L.; Ma, X.; Hu, J.P.; et al. KFe2Se2 is the Parent Compound of K-Doped Iron Selenide Superconductors. Phys. Rev. Lett. 2012, 109, 057003. [Google Scholar] [CrossRef]
- Wen, J.; Xu, G.; Gu, G.; Tranquada, J.M.; Birgeneau, R.J. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: Crystal growth and characterizations. Rep. Prog. Phys. 2011, 74, 124503. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, Z.; Tamegai, T. Review of annealing effects and superconductivity in Fe1+yTe1−xSex superconductors. Supercond. Sci. Technol. 2019, 32, 103001. [Google Scholar] [CrossRef]
- Tranquada, J.M.; Xu, G.; Zaliznyak, I.A. Magnetism and superconductivity in Fe1+yTe1−xSex. J. Phys. Condens. Matter 2020, 32, 374003. [Google Scholar] [CrossRef] [PubMed]
- Katayama, N.; Ji, S.; Louca, D.; Lee, S.; Fujita, M.; Sato, T.J.; Wen, J.; Xu, Z.; Gu, G.; Xu, G.; et al. Investigation of the Spin-Glass Regime between the Antiferromagnetic and Superconducting Phases in Fe1+ySexTe1−x. J. Phys. Soc. Jpn. 2010, 79, 113702. [Google Scholar] [CrossRef]
- Liu, T.J.; Ke, X.; Qian, B.; Hu, J.; Fobes, D.; Vehstedt, E.K.; Pham, H.; Yang, J.H.; Fang, M.H.; Spinu, L.; et al. Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex. Phys. Rev. B 2009, 80, 174509. [Google Scholar] [CrossRef]
- Rößler, S.; Cherian, D.; Harikrishnan, S.; Bhat, H.L.; Elizabeth, S.; Mydosh, J.A.; Tjeng, L.H.; Steglich, F.; Wirth, S. Disorder-driven electronic localization and phase separation in superconducting Fe1+yTe0.5Se0.5 single crystals. Phys. Rev. B 2010, 82, 144523. [Google Scholar] [CrossRef]
- Thampy, V.; Kang, J.; Rodriguez-Rivera, J.A.; Bao, W.; Savici, A.T.; Hu, J.; Liu, T.J.; Qian, B.; Fobes, D.; Mao, Z.Q.; et al. Friedel-Like Oscillations from Interstitial Iron in Superconducting Fe1+yTe0.62Se0.38. Phys. Rev. Lett. 2012, 108, 107002. [Google Scholar] [CrossRef]
- He, X.; Li, G.; Zhang, J.; Karki, A.B.; Jin, R.; Sales, B.C.; Sefat, A.S.; McGuire, M.A.; Mandrus, D.; Plummer, E.W. Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy. Phys. Rev. B 2011, 83, 220502. [Google Scholar] [CrossRef]
- Singh, U.R.; White, S.C.; Schmaus, S.; Tsurkan, V.; Loidl, A.; Deisenhofer, J.; Wahl, P. Spatial inhomogeneity of the superconducting gap and order parameter in FeSe0.4Te0.6. Phys. Rev. B 2013, 88, 155124. [Google Scholar] [CrossRef]
- Massee, F.; Sprau, P.O.; Wang, Y.L.; Davis, J.C.S.; Ghigo, G.; Gu, G.D.; Kwok, W.K. Imaging atomic-scale effects of high-energy ion irradiation on superconductivity and vortex pinning in Fe(Se,Te). Sci. Adv. 2015, 1, e1500033. [Google Scholar] [CrossRef]
- Wahl, P.; Singh, U.R.; Tsurkan, V.; Loidl, A. Nanoscale electronic inhomogeneity in FeSe0.4Te0.6 revealed through unsupervised machine learning. Phys. Rev. B 2020, 101, 115112. [Google Scholar] [CrossRef]
- Cho, D.; Bastiaans, K.M.; Chatzopoulos, D.; Gu, G.D.; Allan, M.P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 2019, 571, 541–545. [Google Scholar] [CrossRef]
- Si, Q.; Yu, R.; Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 2016, 1, 16017. [Google Scholar] [CrossRef]
- Xia, Y.; Qian, D.; Wray, L.; Hsieh, D.; Chen, G.F.; Luo, J.L.; Wang, N.L.; Hasan, M.Z. Fermi Surface Topology and Low-Lying Quasiparticle Dynamics of Parent Fe1+xTe/Se Superconductor. Phys. Rev. Lett. 2009, 103, 037002. [Google Scholar] [CrossRef] [PubMed]
- Tamai, A.; Ganin, A.Y.; Rozbicki, E.; Bacsa, J.; Meevasana, W.; King, P.D.C.; Caffio, M.; Schaub, R.; Margadonna, S.; Prassides, K.; et al. Strong Electron Correlations in the Normal State of the Iron-Based FeSe0.42Te0.58 Superconductor Observed by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. Lett. 2010, 104, 097002. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Sato, T.; Richard, P.; Kawahara, T.; Sekiba, Y.; Qian, T.; Chen, G.F.; Luo, J.L.; Wang, N.L.; Ding, H.; et al. Angle-Resolved Photoemission Spectroscopy of the Iron-Chalcogenide Superconductor Fe1.03Te0.7Se0.3: Strong Coupling Behavior and the Universality of Interband Scattering. Phys. Rev. Lett. 2010, 105, 197001. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, B.; Zhang, Y.; Wei, J.; Ou, H.W.; Zhao, J.F.; He, C.; Ge, Q.Q.; Arita, M.; Shimada, K.; et al. Electronic structure of Fe1.04Te0.66Se0.34. Phys. Rev. B 2010, 81, 014526. [Google Scholar] [CrossRef]
- Liu, Z.K.; Yi, M.; Zhang, Y.; Hu, J.; Yu, R.; Zhu, J.X.; He, R.H.; Chen, Y.L.; Hashimoto, M.; Moore, R.G.; et al. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors. Phys. Rev. B 2015, 92, 235138. [Google Scholar] [CrossRef]
- Yin, J.X.; Wu, Z.; Wang, J.H.; Ye, Z.Y.; Gong, J.; Hou, X.Y.; Shan, L.; Li, A.; Liang, X.J.; Wu, X.X.; et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nat. Phys. 2015, 11, 543–546. [Google Scholar] [CrossRef]
- Sarkar, S.; Van Dyke, J.; Sprau, P.O.; Massee, F.; Welp, U.; Kwok, W.K.; Davis, J.C.S.; Morr, D.K. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe0.45Te0.55. Phys. Rev. B 2017, 96, 060504. [Google Scholar] [CrossRef]
- Miao, H.; Richard, P.; Tanaka, Y.; Nakayama, K.; Qian, T.; Umezawa, K.; Sato, T.; Xu, Y.M.; Shi, Y.B.; Xu, N.; et al. Isotropic superconducting gaps with enhanced pairing on electron Fermi surfaces in FeTe0.55Se0.45. Phys. Rev. B 2012, 85, 094506. [Google Scholar] [CrossRef]
- Majorana, E. Teoria simmetrica dell’elettrone e del positrone. Il Nuovo C. (1924–1942) 1937, 14, 171. [Google Scholar] [CrossRef]
- Wilczek, F. Majorana returns. Nat. Phys. 2009, 5, 614–618. [Google Scholar] [CrossRef]
- Elliott, S.R.; Franz, M. Colloquium: Majorana fermions in nuclear, particle, and solid-state physics. Rev. Mod. Phys. 2015, 87, 137–163. [Google Scholar] [CrossRef]
- Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P. Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science 2012, 336, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.T.; Vaitiekenas, S.; Hansen, E.B.; Danon, J.; Leijnse, M.; Flensberg, K.; Nygård, J.; Krogstrup, P.; Marcus, C.M. Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 2016, 354, 1557–1562. [Google Scholar] [CrossRef]
- Sun, H.H.; Zhang, K.W.; Hu, L.H.; Li, C.; Wang, G.Y.; Ma, H.Y.; Xu, Z.A.; Gao, C.L.; Guan, D.D.; Li, Y.Y.; et al. Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor. Phys. Rev. Lett. 2016, 116, 257003. [Google Scholar] [CrossRef]
- Nadj-Perge, S.; Drozdov, I.K.; Li, J.; Chen, H.; Jeon, S.; Seo, J.; MacDonald, A.H.; Bernevig, B.A.; Yazdani, A. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 2014, 346, 602–607. [Google Scholar] [CrossRef]
- Halperin, B.I.; Oreg, Y.; Stern, A.; Refael, G.; Alicea, J.; von Oppen, F. Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires. Phys. Rev. B 2012, 85, 144501. [Google Scholar] [CrossRef]
- November, B.H.; Sau, J.D.; Williams, J.R.; Hoffman, J.E. Scheme for Majorana Manipulation Using Magnetic Force Microscopy. arXiv 2019, arXiv:1905.09792. [Google Scholar]
- Wang, Z.; Zhang, P.; Xu, G.; Zeng, L.K.; Miao, H.; Xu, X.; Qian, T.; Weng, H.; Richard, P.; Fedorov, A.V.; et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 2015, 92, 115119. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Wu, X.; Yaji, K.; Ishida, Y.; Kohama, Y.; Dai, G.; Sun, Y.; Bareille, C.; Kuroda, K.; et al. Multiple topological states in iron-based superconductors. Nat. Phys. 2019, 15, 41–47. [Google Scholar] [CrossRef]
- Zhang, P.; Yaji, K.; Hashimoto, T.; Ota, Y.; Kondo, T.; Okazaki, K.; Wang, Z.; Wen, J.; Gu, G.D.; Ding, H.; et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 2018, 360, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Qin, S.; Liang, Y.; Fan, H.; Hu, J. Topological characters in Fe(Te1−xSex) thin films. Phys. Rev. B 2016, 93, 115129. [Google Scholar] [CrossRef]
- Wang, Z.F.; Zhang, H.; Liu, D.; Liu, C.; Tang, C.; Song, C.; Zhong, Y.; Peng, J.; Li, F.; Nie, C.; et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nat. Mater. 2016, 15, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, H.; Jiang, C.; Shi, C.; Wang, D.; Cui, G.; Li, X.; Zhuang, Q. Topological edge states in high-temperature superconductiving FeSe/SrTiO3 films with Te substitution. Sci. Rep. 2019, 9, 4154. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Sato, M. Topological Superconductivity in Dirac Semimetals. Phys. Rev. Lett. 2015, 115, 187001. [Google Scholar] [CrossRef]
- Hashimoto, T.; Kobayashi, S.; Tanaka, Y.; Sato, M. Superconductivity in doped Dirac semimetals. Phys. Rev. B 2016, 94, 014510. [Google Scholar] [CrossRef]
- Lohani, H.; Hazra, T.; Ribak, A.; Nitzav, Y.; Fu, H.; Yan, B.; Randeria, M.; Kanigel, A. Band inversion and topology of the bulk electronic structure in FeSe0.45Te0.55. Phys. Rev. B 2020, 101, 245146. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, W.; Liu, B.; Deng, P.; Xu, Z.; Chen, X.; Song, C.; Wang, L.; He, K.; Xu, G.; et al. Edge States at Nematic Domain Walls in FeSe Films. Nano Lett. 2018, 18, 7176–7180. [Google Scholar] [CrossRef]
- Peng, X.L.; Li, Y.; Wu, X.X.; Deng, H.B.; Shi, X.; Fan, W.H.; Li, M.; Huang, Y.B.; Qian, T.; Richard, P.; et al. Observation of topological transition in high-Tc superconducting monolayer FeTe1−xSex films on SrTiO3(001). Phys. Rev. B 2019, 100, 155134. [Google Scholar] [CrossRef]
- Fu, L.; Kane, C.L. Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator. Phys. Rev. Lett. 2008, 100, 096407. [Google Scholar] [CrossRef]
- Read, N.; Green, D. Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 2000, 61, 10267–10297. [Google Scholar] [CrossRef]
- Teo, J.C.Y.; Kane, C.L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 2010, 82, 115120. [Google Scholar] [CrossRef]
- Xu, G.; Lian, B.; Tang, P.; Qi, X.L.; Zhang, S.C. Topological Superconductivity on the Surface of Fe-Based Superconductors. Phys. Rev. Lett. 2016, 117, 047001. [Google Scholar] [CrossRef] [PubMed]
- König, E.J.; Coleman, P. Crystalline-Symmetry-Protected Helical Majorana Modes in the Iron Pnictides. Phys. Rev. Lett. 2019, 122, 207001. [Google Scholar] [CrossRef]
- Qin, S.; Hu, L.; Le, C.; Zeng, J.; Zhang, F.C.; Fang, C.; Hu, J. Quasi-1D Topological Nodal Vortex Line Phase in Doped Superconducting 3D Dirac Semimetals. Phys. Rev. Lett. 2019, 123, 027003. [Google Scholar] [CrossRef]
- Qin, S.; Hu, L.; Wu, X.; Dai, X.; Fang, C.; Zhang, F.C.; Hu, J. Topological vortex phase transitions in iron-based superconductors. Sci. Bull. 2019, 64, 1207–1214. [Google Scholar] [CrossRef]
- Yin, J.X.; Zhang, S.S.; Dai, G.; Zhao, Y.; Kreisel, A.; Macam, G.; Wu, X.; Miao, H.; Huang, Z.Q.; Martiny, J.H.J.; et al. Quantum Phase Transition of Correlated Iron-Based Superconductivity in LiFe1−xCoxAs. Phys. Rev. Lett. 2019, 123, 217004. [Google Scholar] [CrossRef]
- Hao, N.; Shen, S.Q. Topological superconducting states in monolayer FeSe/SrTiO3. Phys. Rev. B 2015, 92, 165104. [Google Scholar] [CrossRef]
- Gastiasoro, M.N.; Hirschfeld, P.J.; Andersen, B.M. Impurity states and cooperative magnetic order in Fe-based superconductors. Phys. Rev. B 2013, 88, 220509. [Google Scholar] [CrossRef]
- Mukherjee, S.; Gastiasoro, M.N.; Andersen, B.M. Impurity-induced subgap bound states in alkali-doped iron chalcogenide superconductors. Phys. Rev. B 2013, 88, 134508. [Google Scholar] [CrossRef]
- Chi, S.; Aluru, R.; Singh, U.R.; Liang, R.; Hardy, W.N.; Bonn, D.A.; Kreisel, A.; Andersen, B.M.; Nelson, R.; Berlijn, T.; et al. Impact of iron-site defects on superconductivity in LiFeAs. Phys. Rev. B 2016, 94, 134515. [Google Scholar] [CrossRef]
- Martiny, J.H.J.; Kreisel, A.; Andersen, B.M. Theoretical study of impurity-induced magnetism in FeSe. Phys. Rev. B 2019, 99, 014509. [Google Scholar] [CrossRef]
- Song, S.Y.; Martiny, J.H.J.; Kreisel, A.; Andersen, B.M.; Seo, J. Visualization of Local Magnetic Moments Emerging from Impurities in Hund’s Metal States of FeSe. Phys. Rev. Lett. 2020, 124, 117001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Yin, J.X.; Dai, G.; Zhao, L.; Chang, T.R.; Shumiya, N.; Jiang, K.; Zheng, H.; Bian, G.; Multer, D.; et al. Field-free platform for Majorana-like zero mode in superconductors with a topological surface state. Phys. Rev. B 2020, 101, 100507. [Google Scholar] [CrossRef]
- Liu, C.; Chen, C.; Liu, X.; Wang, Z.; Liu, Y.; Ye, S.; Wang, Z.; Hu, J.; Wang, J. Zero-energy bound states in the high-temperature superconductors at the two-dimensional limit. Sci. Adv. 2020, 6, eaax7547. [Google Scholar] [CrossRef]
- Jiang, K.; Dai, X.; Wang, Z. Quantum Anomalous Vortex and Majorana Zero Mode in Iron-Based Superconductor Fe(Te,Se). Phys. Rev. X 2019, 9, 011033. [Google Scholar] [CrossRef]
- Fan, P.; Yang, F.; Qian, G.; Chen, H.; Zhang, Y.Y.; Li, G.; Huang, Z.; Xing, Y.; Kong, L.; Liu, W.; et al. Reversible transition between Yu-Shiba-Rusinov state and Majorana zero mode by magnetic adatom manipulation in an iron-based superconductor. arXiv 2020, arXiv:2001.07376. [Google Scholar]
- Farinacci, L.; Ahmadi, G.; Reecht, G.; Ruby, M.; Bogdanoff, N.; Peters, O.; Heinrich, B.W.; von Oppen, F.; Franke, K.J. Tuning the Coupling of an Individual Magnetic Impurity to a Superconductor: Quantum Phase Transition and Transport. Phys. Rev. Lett. 2018, 121, 196803. [Google Scholar] [CrossRef]
- Chatzopoulos, D.; Cho, D.; Bastiaans, K.M.; Steffensen, G.O.; Bouwmeester, D.; Akbari, A.; Gu, G.; Paaske, J.; Andersen, B.M.; Allan, M.P. Spatially dispersing Yu-Shiba-Rusinov states in the unconventional superconductor FeTe0.55Se0.45. arXiv 2020, arXiv:2006.12840. [Google Scholar]
- Zhang, Y.; Jiang, K.; Zhang, F.; Wang, J.; Wang, Z. Atomic line defects in unconventional superconductors as a new route toward one dimensional topological superconductors. arXiv 2020, arXiv:2004.05860. [Google Scholar]
- Wu, X.; Yin, J.X.; Liu, C.X.; Hu, J. Topological magnetic line defects in Fe(Te,Se) high-temperature superconductors. arXiv 2020, arXiv:2004.05848. [Google Scholar]
- Wang, D.; Kong, L.; Fan, P.; Chen, H.; Zhu, S.; Liu, W.; Cao, L.; Sun, Y.; Du, S.; Schneeloch, J.; et al. Evidence for Majorana bound states in an iron-based superconductor. Science 2018, 362, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chen, X.; Yang, H.; Du, Z.; Zhu, X.; Wang, E.; Wen, H.H. Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe0.55Se0.45. Nat. Commun. 2018, 9, 970. [Google Scholar] [CrossRef] [PubMed]
- Machida, T.; Sun, Y.; Pyon, S.; Takeda, S.; Kohsaka, Y.; Hanaguri, T.; Sasagawa, T.; Tamegai, T. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 2019, 18, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, Q.; Zhang, T.Z.; Li, D.; Shen, P.P.; Dong, X.L.; Zhao, Z.X.; Zhang, T.; Feng, D.L. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li0.84Fe0.16)OHFeSe. Chin. Phys. Lett. 2019, 36, 057403. [Google Scholar] [CrossRef]
- Chen, X.; Chen, M.; Duan, W.; Zhu, X.; Yang, H.; Wen, H.H. Observation and characterization of the zero energy conductance peak in the vortex core state of FeTe0.55Se0.45. arXiv 2019, arXiv:1909.01686. [Google Scholar]
- Kong, L.; Zhu, S.; Papaj, M.; Chen, H.; Cao, L.; Isobe, H.; Xing, Y.; Liu, W.; Wang, D.; Fan, P.; et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 2019, 15, 1181–1187. [Google Scholar] [CrossRef]
- Zhu, S.; Kong, L.; Cao, L.; Chen, H.; Papaj, M.; Du, S.; Xing, Y.; Liu, W.; Wang, D.; Shen, C.; et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 2020, 367, 189–192. [Google Scholar] [CrossRef]
- Caroli, C.; Gennes, P.D.; Matricon, J. Bound Fermion states on a vortex line in a type II superconductor. Phys. Lett. 1964, 9, 307–309. [Google Scholar] [CrossRef]
- Hess, H.F.; Robinson, R.B.; Dynes, R.C.; Valles, J.M.; Waszczak, J.V. Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States near and inside a Fluxoid. Phys. Rev. Lett. 1989, 62, 214–216. [Google Scholar] [CrossRef]
- Hanaguri, T.; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takagi, H. Scanning tunneling microscopy/spectroscopy of vortices in LiFeAs. Phys. Rev. B 2012, 85, 214505. [Google Scholar] [CrossRef]
- Uranga, B.M.; Gastiasoro, M.N.; Andersen, B.M. Electronic vortex structure of Fe-based superconductors: Application to LiFeAs. Phys. Rev. B 2016, 93, 224503. [Google Scholar] [CrossRef]
- Chen, C.; Liu, Q.; Bao, W.C.; Yan, Y.; Wang, Q.H.; Zhang, T.; Feng, D. Observation of Discrete Conventional Caroli–de Gennes–Matricon States in the Vortex Core of Single-Layer FeSe/SrTiO3. Phys. Rev. Lett. 2020, 124, 097001. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.K.; Machida, T.; Huang, Y.; Hanaguri, T.; Zhang, F.C. Scalable Majorana vortex modes in iron-based superconductors. Sci. Adv. 2020, 6, eaay0443. [Google Scholar] [CrossRef] [PubMed]
- Berthod, C. Signatures of nodeless multiband superconductivity and particle-hole crossover in the vortex cores of FeTe0.55Se0.45. Phys. Rev. B 2018, 98, 144519. [Google Scholar] [CrossRef]
- Wu, X.; Chung, S.B.; Liu, C.X.; Kim, E.A. Topological orders competing for the Dirac surface state in FeSeTe surfaces. arXiv 2020, arXiv:2004.13068. [Google Scholar]
- Ghazaryan, A.; Lopes, P.L.S.; Hosur, P.; Gilbert, M.J.; Ghaemi, P. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Phys. Rev. B 2020, 101, 020504. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, C.; Zhang, T.; Peng, R.; Yan, Y.J.; Wen, C.H.P.; Lou, X.; Huang, Y.L.; Tian, J.P.; Dong, X.L.; et al. Robust and Clean Majorana Zero Mode in the Vortex Core of High-Temperature Superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 2018, 8, 041056. [Google Scholar] [CrossRef]
- Law, K.T.; Lee, P.A.; Ng, T.K. Majorana Fermion Induced Resonant Andreev Reflection. Phys. Rev. Lett. 2009, 103, 237001. [Google Scholar] [CrossRef]
- Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 2010, 82, 180516. [Google Scholar] [CrossRef]
- Nichele, F.; Drachmann, A.C.C.; Whiticar, A.M.; O’Farrell, E.C.T.; Suominen, H.J.; Fornieri, A.; Wang, T.; Gardner, G.C.; Thomas, C.; Hatke, A.T.; et al. Scaling of Majorana Zero-Bias Conductance Peaks. Phys. Rev. Lett. 2017, 119, 136803. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Cao, L.; Zhu, S.; Kong, L.; Wang, G.; Papaj, M.; Zhang, P.; Liu, Y.; Chen, H.; Li, G.; et al. A new Majorana platform in an Fe-As bilayer superconductor. arXiv 2019, arXiv:1907.00904. [Google Scholar]
- Wu, X.; Benalcazar, W.A.; Li, Y.; Thomale, R.; Liu, C.X.; Hu, J. Boundary-obstructed topological high-Tc superconductivity in iron pnictides. arXiv 2020, arXiv:2003.12204. [Google Scholar]
- Wang, Z.; Rodriguez, J.O.; Jiao, L.; Howard, S.; Graham, M.; Gu, G.D.; Hughes, T.L.; Morr, D.K.; Madhavan, V. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 2020, 367, 104–108. [Google Scholar] [CrossRef]
- Zhang, R.X.; Cole, W.S.; Das Sarma, S. Helical Hinge Majorana Modes in Iron-Based Superconductors. Phys. Rev. Lett. 2019, 122, 187001. [Google Scholar] [CrossRef]
- Benalcazar, W.A.; Bernevig, B.A.; Hughes, T.L. Quantized electric multipole insulators. Science 2017, 357, 61–66. [Google Scholar] [CrossRef]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.P.; Bernevig, B.A.; Neupert, T. Higher-order topological insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef]
- Călugăru, D.; Juričić, V.; Roy, B. Higher-order topological phases: A general principle of construction. Phys. Rev. B 2019, 99, 041301. [Google Scholar] [CrossRef]
- Yan, Z. Higher-Order Topological Odd-Parity Superconductors. Phys. Rev. Lett. 2019, 123, 177001. [Google Scholar] [CrossRef]
- Gray, M.J.; Freudenstein, J.; Zhao, S.Y.F.; O’Connor, R.; Jenkins, S.; Kumar, N.; Hoek, M.; Kopec, A.; Huh, S.; Taniguchi, T.; et al. Evidence for Helical Hinge Zero Modes in an Fe-Based Superconductor. Nano Lett. 2019, 19, 4890–4896. [Google Scholar] [CrossRef]
- Zhang, R.X.; Cole, W.S.; Wu, X.; Das Sarma, S. Higher-Order Topology and Nodal Topological Superconductivity in Fe(Se,Te) Heterostructures. Phys. Rev. Lett. 2019, 123, 167001. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Thomale, R.; Liu, C.X. High-Tc Superconductor Fe(Se,Te) Monolayer: An Intrinsic, Scalable and Electrically-tunable Majorana Platform. arXiv 2019, arXiv:1905.10648. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreisel, A.; Hirschfeld, P.J.; Andersen, B.M. On the Remarkable Superconductivity of FeSe and Its Close Cousins. Symmetry 2020, 12, 1402. https://doi.org/10.3390/sym12091402
Kreisel A, Hirschfeld PJ, Andersen BM. On the Remarkable Superconductivity of FeSe and Its Close Cousins. Symmetry. 2020; 12(9):1402. https://doi.org/10.3390/sym12091402
Chicago/Turabian StyleKreisel, Andreas, Peter J. Hirschfeld, and Brian M. Andersen. 2020. "On the Remarkable Superconductivity of FeSe and Its Close Cousins" Symmetry 12, no. 9: 1402. https://doi.org/10.3390/sym12091402
APA StyleKreisel, A., Hirschfeld, P. J., & Andersen, B. M. (2020). On the Remarkable Superconductivity of FeSe and Its Close Cousins. Symmetry, 12(9), 1402. https://doi.org/10.3390/sym12091402