# Influence of Plastic Anisotropy on the Limit Load of an Overmatched Cracked Tension Specimen

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statement of the Problem

## 3. Solution for an Auxiliary Problem

#### 3.1. Kinematically Admissible Velocity Field

#### 3.2. Plastic Work Rate

## 4. Limit Load of Cracked Specimens

#### 4.1. Middle Cracked Specimen

#### 4.2. Specimen Containing an Arbitrary Straight Crack inside the Weld

#### 4.3. Specimen with an Arbitrary Crack inside the Weld

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zerbst, U.; Ainsworth, R.A.; Schwalbe, K.-H. Basic principles of analytical flaw assessment methods. Int. J. Press. Vessel. Pip.
**2000**, 77, 855–867. [Google Scholar] [CrossRef] - Miller, A.G. Review of limit loads of structures containing defects. Int. J. Press. Vessel. Pip.
**1988**, 32, 197–327. [Google Scholar] [CrossRef] - Kim, Y.-J.; Schwalbe, K.-H. Compendium of yield load solutions for strength mis-matched DE(T), SE(B) and C(T) specimens. Eng. Fract. Mech.
**2001**, 68, 1137–1151. [Google Scholar] [CrossRef] - Alexandrov, S. Upper Bound Limit Load Solutions for Welded Joints with Cracks; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Alexandrov, S.; Gracio, J. Influence of anisotropy on a limit load of welded strength overmatched middle cracked tension specimens. Fat. Fract. Eng. Mater. Struct.
**2003**, 26, 399–403. [Google Scholar] [CrossRef] - Alexandrov, S.; Kontchakova, N. Influence of anisotropy on limit load of weld-strength overmatched cracked plates in pure bending. Mater. Sci. Eng. A
**2004**, 387–389, 395–398. [Google Scholar] [CrossRef] - Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
- Alexandrov, S.; Chung, K.-H.; Chung, K. Effect of plastic anisotropy of weld on limit load of undermatched middle cracked tension specimens. Fat. Fract. Eng. Mater. Struct.
**2007**, 30, 333–341. [Google Scholar] [CrossRef] - Alexandrov, S.; Tzou, G.-Y.; Hsia, S.-Y. Effect of plastic anisotropy on the limit load of highly undermatched welded specimens in bending. Eng. Fract. Mech.
**2008**, 75, 3131–3140. [Google Scholar] [CrossRef] - Alexandrov, S.; Mustafa, Y. Influence of plastic anisotropy on the limit load of highly under-matched scarf joints with a crack subject to tension. Eng. Fract. Mech.
**2014**, 131, 616–626. [Google Scholar] [CrossRef] - Alexandrov, S.; Jeng, Y.-R. Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Cont. Mech. Therm.
**2013**, 25, 685–689. [Google Scholar] [CrossRef] - Joch, J.; Ainsworth, R.A.; Hyde, T.H. Limit load and J-estimates for idealized problems of deeply cracked welded joints in plane-strain bending and tension. Fat. Fract. Eng. Mater. Struct.
**1993**, 16, 1061–1079. [Google Scholar] [CrossRef] - Hao, S.; Cornec, A.; Schwalbe, K.-H. Plastic stress-strain fields and limit loads of a plane strain cracked tensile panel with a mismatched welded joint. Int. J. Solids Struct.
**1997**, 34, 297–326. [Google Scholar] [CrossRef] - Alexandrov, S.; Chikanova, N.; Kocak, M. Analytic yield load solution for overmatched center cracked tension specimen. Eng. Fract. Mech.
**1999**, 64, 383–399. [Google Scholar] [CrossRef] - Kim, Y.-J.; Schwalbe, K.-H. Mismatch effect on plastic yield loads in idealized weldments I. Weld centre cracks. Eng. Fract. Mech.
**2001**, 68, 163–182. [Google Scholar] [CrossRef] - Alexandrov, S. A limit load solution for a highly weld strength undermatched tensile panel with an arbitrary crack. Eng. Fract. Mech.
**2010**, 77, 3368–3371. [Google Scholar] [CrossRef] - Sattari-Far, I. Finite element analysis of limit loads for surface cracks in plates. Int. J. Press. Vessel. Pip.
**1994**, 57, 237–243. [Google Scholar] [CrossRef] - Kozak, D.; Gubeljak, N.; Konjatić, P.; Sertić, J. Yield load solutions of heterogeneous welded joints. Int. J. Press. Vessel. Pip.
**2009**, 86, 807–812. [Google Scholar] [CrossRef] [Green Version] - Naib, S.; De Waele, W.; Štefane, P.; Gubeljak, N.; Hertelé, S. Analytical limit load predictions in heterogeneous welded single edge notched tension specimens. Procedia Struct. Integr.
**2018**, 13, 1725–1730. [Google Scholar] [CrossRef] - Legarth, B.N.; Tvergaard, V.; Kuroda, M. Effects of plastic anisotropy on crack-tip behaviour. Int. J. Fract.
**2002**, 117, 297–312. [Google Scholar] [CrossRef] - Schwalbe, K.H.; Cornec, A. The engineering treatment model (ETM) and its practical application. Fat. Fract. Eng. Mater. Struct.
**1991**, 14, 405–412. [Google Scholar] [CrossRef] - Benzerga, A.; Besson, J.; Pineau, A. Anisotropic ductile fracture: Part II: Theory. Acta Mater.
**2004**, 52, 4639–4650. [Google Scholar] [CrossRef] - Tanguy, B.; Luu, T.T.; Perrin, G.; Pineau, A.; Besson, J. Plastic and damage behaviour of a high strength X100 pipeline steel: Experiments and modelling. Int. J. Press. Vessel. Pip.
**2008**, 85, 322–335. [Google Scholar] [CrossRef] - Frodal, B.H.; Morin, D.; Børvik, T.; Hopperstad, O. On the effect of plastic anisotropy, strength and work hardening on the tensile ductility of aluminium alloys. Int. J. Solids Struct.
**2020**, 188–189, 118–132. [Google Scholar] [CrossRef] - Schwalbe, K.-H. On the beauty of analytical models for fatigue crack propagation and fracture—A personal historical review. J. ASTM Int.
**2010**, 7, 1–53. [Google Scholar] [CrossRef] - Zerbst, U.; Madia, M. Analytical flaw assessment. Eng. Fract. Mech.
**2017**, 187, 316–367. [Google Scholar] [CrossRef] - Habraken, A.M. Modelling the plastic anisotropy of metals. Arch. Comput. Methods Eng.
**2004**, 11, 3–96. [Google Scholar] [CrossRef] - Rice, J.R. Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids
**1973**, 21, 63–74. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lyamina, E.; Kalenova, N.; Nguyen, D.K.
Influence of Plastic Anisotropy on the Limit Load of an Overmatched Cracked Tension Specimen. *Symmetry* **2020**, *12*, 1079.
https://doi.org/10.3390/sym12071079

**AMA Style**

Lyamina E, Kalenova N, Nguyen DK.
Influence of Plastic Anisotropy on the Limit Load of an Overmatched Cracked Tension Specimen. *Symmetry*. 2020; 12(7):1079.
https://doi.org/10.3390/sym12071079

**Chicago/Turabian Style**

Lyamina, Elena, Nataliya Kalenova, and Dinh Kien Nguyen.
2020. "Influence of Plastic Anisotropy on the Limit Load of an Overmatched Cracked Tension Specimen" *Symmetry* 12, no. 7: 1079.
https://doi.org/10.3390/sym12071079