Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images
Abstract
:1. Introduction
2. Proposed Method
2.1. Overview
2.2. Parameter Learning Strategy
2.3. Dataset Updating Strategy
Algorithm 1 Semi-supervised learning method for the blood vessel tree segmentation |
Input: Training dataset , retinal image {. |
Output: The blood vessel tree image . |
STEP 1: Initialization: |
● Learning method: epoch, batch size, learning rate, weight decay rate. |
● Initial training set D. |
● Initial U-Net model. |
STEP 2: Update the U-Net model parameters by solving Equation (2). |
STEP 3: Predict the pseudo-label using Equation (3). |
STEP 4: Update training dataset using Equation (4). |
STEP 5: |
● while a stopping criterion is not met do |
● Update the U-Net model parameters using the updated training dataset ; |
● Return to STEP 3 |
● end while |
STEP 6: Take as input and compute using Equation (3). |
3. Experimental Results
3.1. Experimental Setup
3.1.1. Datasets
3.1.2. Implementation Details
3.2. Evaluation Metrics
3.3. Performance Comparison
3.3.1. Quantitative Performance Comparison
3.3.2. Qualitative Performance Comparison
3.4. Convergence Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S. Blood vessel segmentation methodologies in retinal images—A survey. Comput. Methods Programs Biomed. 2012, 108, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Zana, F.; Klein, J. A multimodal registration algorithm of eye fundus images using vessels detection and Hough transform. IEEE Trans. Med. Imaging 1999, 18, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Benvenuti, S.; Giacomini, M. Mathematical Modeling of Retinal Mosaic Formation by Mechanical Interactions and Dendritic Overlap. IEEE Trans. NanoBiosci. 2007, 6, 180–185. [Google Scholar] [CrossRef]
- Mariño, C.; Penedo, M.G.G.; Penas, M.; Carreira, M.J.; Gonzalez, F. Personal authentication using digital retinal images. Pattern Anal. Appl. 2006, 9, 21–33. [Google Scholar] [CrossRef]
- Kirbas, C.; Quek, F. A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 2004, 36, 81–121. [Google Scholar] [CrossRef]
- Li, Q.; Feng, B.; Xie, L.; Liang, P.; Zhang, H.; Wang, T. A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images. IEEE Trans. Med. Imaging 2015, 35, 109–118. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Chatterjee, S.; Katz, N.; Nelson, M.; Goldbaum, M. Detection of blood vessels in retinal images using two-Dimensional matched filters. IEEE Trans. Med. Imaging 1989, 8, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-Based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawi, M.; Qutaishat, M.; Arrar, M. An improved matched filter for blood vessel detection of digital retinal images. Comput. Biol. Med. 2007, 37, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Cinsdikici, M.; Aydın, D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. Comput. Methods Programs Biomed. 2009, 96, 85–95. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Zhang, K.; Karray, F. Retinal vessel extraction by matched filter with first-Order derivative of Gaussian. Comput. Biol. Med. 2010, 40, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.A.; Yan, H. High speed detection of retinal blood vessels in fundus image using phase congruency, Soft Computing–A Fusion of Foundations. Soft Comput. 2010, 15, 1217–1230. [Google Scholar] [CrossRef]
- Odstrcilik, J.; Kolar, R.; Kubena, T.; Cernosek, P.; Budai, A.; Hornegger, J.; Gazarek, J.; Svoboda, O.; Jan, J.; Angelopoulou, E. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-Resolution fundus image database. IET Image Process. 2013, 7, 373–383. [Google Scholar] [CrossRef]
- Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N. Trainable COSFIRE filters for vessel delineation with application to retinal images. Med. Image Anal. 2015, 19, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, I.; Sun, Y. Recursive tracking of vascular networks in angiograms based on the detection-Deletion scheme. IEEE Trans. Med. Imaging 1993, 12, 334–341. [Google Scholar] [CrossRef]
- Zhou, L.; Rzeszotarski, M.; Singerman, L.; Chokreff, J. The detection and quantification of retinopathy using digital angiograms. IEEE Trans. Med. Imaging 1994, 13, 619–626. [Google Scholar] [CrossRef]
- Quek, F.; Kirbas, C. Vessel extraction in medical images by wave-Propagation and traceback. IEEE Trans. Med. Imaging 2001, 20, 117–131. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Ai, D.; Song, H.; Jiang, Y.; Huang, Y.; Zhang, L.; Wang, Y. Automatic retinal vessel segmentation using multi-Scale superpixel chain tracking. Digit. Signal Process. 2018, 81, 26–42. [Google Scholar] [CrossRef]
- Zana, F.; Klein, J.-C. Segmentation of vessel-Like patterns using mathematical morphology and curvature evaluation. IEEE Trans. Image Process. 2001, 10, 1010–1019. [Google Scholar] [CrossRef] [Green Version]
- Luiz, C.N. An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst. Appl. 2017, 78, 182–192. [Google Scholar]
- Mendonça, A.M.; Campilho, A. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 2006, 25, 1200–1213. [Google Scholar] [CrossRef] [PubMed]
- Fraz, M.M.; Barman, S.; Remagnino, P.; Hoppe, A.; Basit, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G. An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput. Methods Programs Biomed. 2012, 108, 600–616. [Google Scholar] [CrossRef]
- Miri, M.S.; Mahloojifar, A. Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction. IEEE Trans. Biomed. Eng. 2010, 58, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.S.Y.; Gao, Y.; Liew, A.W.-C. General Retinal Vessel Segmentation Using Regularization-Based Multiconcavity Modeling. IEEE Trans. Med. Imaging 2010, 29, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Espona, L.; Carreira, M.J.; Ortega, M.; Penedo, M.G. A snake for retinal vessel segmentation. Pattern Recognit. 2007, 4478, 178–185. [Google Scholar]
- Espona, L.; Carreira, M.J.; Penedo, M.G. Retinal vessel tree segmentation using a deformable contour model. Pattern Recognit. 2008, 5197, 683–690. [Google Scholar]
- Zhao, Y.; Rada, L.; Chen, K.; Harding, S.; Zheng, Y. Automated Vessel Segmentation Using Infinite Perimeter Active Contour Model with Hybrid Region Information with Application to Retinal Images. IEEE Trans. Med. Imaging 2015, 34, 1797–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.Q.; Wang, X.H.; Wang, X.F.; Shih, F.Y. Retinal vessels segmentation based on level set and region growing. Pattern Recognit. 2014, 47, 2437–2446. [Google Scholar] [CrossRef]
- Zhang, Y.; Hsu, W.; Lee, M.L. Detection of Retinal Blood Vessels Based on Nonlinear Projections. J. Signal Process. Syst. 2008, 55, 103–112. [Google Scholar] [CrossRef]
- Martinez-Perez, M.E.; Hughes, A.; Thom, S.; Bharath, A.A.; Parker, K. Segmentation of blood vessels from red-Free and fluorescein retinal images. Med. Image Anal. 2007, 11, 47–61. [Google Scholar] [CrossRef]
- Martinez-Perez, M.E.; Hughes, A.D.; Thorn, S.A.; Parker, K.H. Improvement of a retinal blood vessel segmentation method using the Insight Segmentation and Registration Toolkit (ITK). Eng. Med. Biol. Soc. 2007, 2007, 892–895. [Google Scholar]
- Vlachos, M.; Dermatas, E. Multi-Scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 2010, 34, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, U.T.; Bhuiyan, A.; Park, L.A.; Ramamohanarao, K. An effective retinal blood vessel segmentation method using multi-Scale line detection. Pattern Recognit. 2013, 46, 703–715. [Google Scholar] [CrossRef]
- Niemeijer, M.; Staal, J.; Van Ginneken, B.; Loog, M.; Abramoff, M. Comparative study of retinal vessel segmentation methods on a new publicly available database. Int. Soc. Opt. Eng. 2004, 5370, 648–656. [Google Scholar] [CrossRef]
- Staal, J.; Abramoff, M.; Niemeijer, M.; Viergever, M.; Van Ginneken, B. Ridge-Based Vessel Segmentation in Color Images of the Retina. IEEE Trans. Med. Imaging 2004, 23, 501–509. [Google Scholar] [CrossRef]
- Soares, J.; Leandro, J.J.G.; Cesar, R., Jr.; Jelinek, H.; Cree, M.J. Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 2006, 25, 1214–1222. [Google Scholar] [CrossRef] [Green Version]
- Roychowdhury, S.; Koozekanani, D.D.; Parhi, K.K.; Roychowdhury, S. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Sub-Image Classification. IEEE J. Biomed. Health 2014, 19. [Google Scholar] [CrossRef]
- Ricci, E.; Perfetti, R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med. Imaging 2007, 26, 1357–1365. [Google Scholar] [CrossRef]
- Xu, L.; Luo, S. A novel method for blood vessel detection from retinal images. Biomed. Eng. Online 2010, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Lupaşcu, C.A.; Tegolo, D.; Trucco, E. Fabc: Retinal Vessel Segmentation Using AdaBoost. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1267–1274. [Google Scholar] [CrossRef]
- Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S. An Ensemble Classification-Based Approach Applied to Retinal Blood Vessel Segmentation. IEEE Trans. Biomed. Eng. 2012, 59, 2538–2548. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.; Aquino, A.; Gegundez_Arias, M.; Bravo, J.M. A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features. IEEE Trans. Med. Imaging 2010, 30, 146–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, E.; Du, L.; Wu, Y.; Zhu, Y.J.; Ling, H. Discriminative vessel segmentation in retinal images by fusing context-Aware hybrid features. Mach. Vis. Appl. 2014, 25, 1779–1792. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Khuwaja, P.; Ismaili, I.A. A framework for retinal vessel segmentation from fundus images using hybrid feature set and hierarchical classification. Signal Image Video Process. 2018, 13, 379–387. [Google Scholar] [CrossRef]
- Zhu, C.; Zou, B.; Zhao, R.; Cui, J.; Duan, X.; Chen, Z.; Liang, Y. Retinal vessel segmentation in colour fundus images using Extreme Learning Machine. Comput. Med. Imaging Graph. 2017, 55, 68–77. [Google Scholar] [CrossRef]
- Orlando, J.I.; Prokofyeva, E.; Blaschko, M.B. A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images. IEEE Trans. Biomed. Eng. 2017, 64, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Bengio, Y.; Goodfellow, J.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hu, K.; Zhang, Z.; Niu, X.; Zhang, Y.; Cao, C.; Xiao, F.; Gao, X. Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-Entropy loss function. Neurocomputing 2018, 309, 179–191. [Google Scholar] [CrossRef]
- Ngo, L.; Han, J.-H. Multi-Level deep neural network for efficient segmentation of blood vessels in fundus images. Electron. Lett. 2017, 53, 1096–1098. [Google Scholar] [CrossRef]
- Dharmawan, D.A.; Li, D.; Ng, B.P.; Rahardja, S. A New Hybrid Algorithm for Retinal Vessels Segmentation on Fundus Images. IEEE Access 2019, 7, 41885–41896. [Google Scholar] [CrossRef]
- Lahiri, A.; Ayush, K.; Biswas, P.K. Generative Adversarial Learning for Reducing Manual Annotation in Semantic Segmentation on Large Scale Miscroscopy Images: Automated Vessel Segmentation in Retinal Fundus Image as Test Case. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Lu, J.; Xu, Y.; Chen, M.; Luo, Y. A Coarse-to-Fine Fully Convolutional Neural Network for Fundus Vessel Segmentation. Symmetry 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yin, Y.; Cao, G.; Wei, B.; Zheng, Y.; Yang, G. Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 2015, 149, 708–717. [Google Scholar] [CrossRef]
- Samuel, P.M.; Veeramalai, T. Multilevel and Multiscale Deep Neural Network for Retinal Blood Vessel Segmentation. Symmetry 2019, 11, 946. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhao, Z.; Ren, Q.; Xu, Y.; Yu, Y. Dense U-net Based on Patch-Based Learning for Retinal Vessel Segmentation. Entropy 2019, 21, 168. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Zhang, H.; Hu, G.; Zhang, H. Automatic Retinal Vessel Segmentation via Deeply Supervised and Smoothly Regularized Network. IEEE Access 2018, 7, 57717–57724. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, Y.; Jiang, W.; Wang, L. Blood Vessel Segmentation of Retinal Images Based on Neural Network. Intell. Tutoring Syst. 2015, 9218, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Maji, D.; Santara, A.; Mitra, P.; Sheet, D. Ensemble of Deep Convolutional Neural Networks for Learning to Detect Retinal Vessels in Fundus Images. Mach. Learn. 2016, arXiv:1603.04833. [Google Scholar]
- Liskowski, P.; Krawiec, K. Segmenting Retinal Blood Vessels With Deep Neural Networks. IEEE Trans. Med. Imaging 2016, 35, 2369–2380. [Google Scholar] [CrossRef]
- Fu, H.; Xu, Y.; Wong, D.W.K.; Liu, J. Retinal vessel segmentation via deep learning network and fully-Connected conditional random fields. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016. [Google Scholar]
- Yao, Z.; Zhang, Z.; Xu, L.Q. Convolutional neural network for retinal blood vessel segmentation. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016. [Google Scholar]
- Fu, H.; Xu, Y.; Lin, S.; Wong, D.; Liu, J. DeepVessel: Retinal Vessel Segmentation via Deep Learning and Conditional Random Field. Comput. Vis. 2016, 9901, 132–139. [Google Scholar] [CrossRef]
- Tan, J.H.; Acharya, U.R.; Bhandary, S.; Chua, K.C.; Sivaprasad, S. Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 2017, 20, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Kang, H.; Zhang, Y.; Wang, K.; Li, T. BTS-DSN: Deeply supervised neural network with short connections for retinal vessel segmentation. Int. J. Med. Inform. 2019, 126, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.; Yang, X.; Cheng, K.-T. A Three-Stage Deep Learning Model for Accurate Retinal Vessel Segmentation. IEEE J. Biomed. Health 2019, 23, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, D. Weakly Supervised and Semi-Supervised Semantic Segmentation for Optic Disc of Fundus Image. Symmetry 2020, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Soomro, T.A.; Afifi, A.J.; Zheng, L.; Soomro, S.; Gao, J.; Hellwich, O.; Paul, M. Deep Learning Models for Retinal Blood Vessels Segmentation: A Review. IEEE Access 2019, 7, 71696–71717. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Soomro, T.A.; Afifi, A.J.; Gao, J.; Hellwich, O.; Paul, M.; Zheng, L. Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss. In Proceedings of the 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 10–13 December 2018. [Google Scholar]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-Supervised learning. Mach. Learn. 2019, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
n | Method | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Mean ACC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | S-S | 0.9553 | 0.9468 | 0.9567 | 0.9527 | 0.9354 | 0.9491 | 0.9535 | 0.9525 | 0.9512 | 0.9612 | 0.95144 |
S | 0.9544 | 0.9468 | 0.9567 | 0.9528 | 0.9367 | 0.9509 | 0.9547 | 0.9548 | 0.9556 | 0.9600 | 0.95234 | |
5 | S-S | 0.9585 | 0.9580 | 0.9476 | 0.9548 | 0.9608 | 0.9563 | 0.9645 | 0.9600 | 0.9559 | 0.9656 | 0.95820 |
S | 0.9574 | 0.9577 | 0.9502 | 0.9560 | 0.9600 | 0.9568 | 0.9636 | 0.9601 | 0.9570 | 0.9623 | 0.95811 | |
6 | S-S | 0.9592 | 0.9564 | 0.9579 | 0.9622 | 0.9626 | 0.9595 | 0.9573 | 0.9652 | 0.9563 | 0.9653 | 0.96019 |
S | 0.9604 | 0.9570 | 0.9578 | 0.9612 | 0.9617 | 0.9588 | 0.9575 | 0.9639 | 0.9567 | 0.9619 | 0.95969 | |
7 | S-S | 0.9653 | 0.9643 | 0.9625 | 0.9643 | 0.9652 | 0.9584 | 0.9665 | 0.9638 | 0.9538 | 0.9655 | 0.96296 |
S | 0.9639 | 0.9643 | 0.9618 | 0.9623 | 0.9623 | 0.9593 | 0.9659 | 0.9633 | 0.9568 | 0.9644 | 0.96243 | |
8 | S-S | 0.9658 | 0.9652 | 0.9651 | 0.9639 | 0.9627 | 0.9644 | 0.9646 | 0.9627 | 0.9651 | 0.9661 | 0.96456 |
S | 0.9639 | 0.9644 | 0.9638 | 0.9634 | 0.9608 | 0.9647 | 0.964 | 0.9624 | 0.9648 | 0.9653 | 0.96375 | |
9 | S-S | 0.9658 | 0.9668 | 0.9642 | 0.9655 | 0.9647 | 0.9654 | 0.9655 | 0.9652 | 0.9646 | 0.9652 | 0.96529 |
S | 0.9653 | 0.9659 | 0.9619 | 0.9637 | 0.9636 | 0.9651 | 0.9640 | 0.9649 | 0.9625 | 0.9640 | 0.96409 | |
10 | S-S | 0.9645 | 0.9653 | 0.9653 | 0.9658 | 0.9675 | 0.9651 | 0.9676 | 0.9653 | 0.9659 | 0.9658 | 0.96581 |
S | 0.9653 | 0.9631 | 0.9649 | 0.9642 | 0.9671 | 0.9649 | 0.9664 | 0.9635 | 0.9651 | 0.9659 | 0.96504 | |
11 | S-S | 0.9678 | 0.9678 | 0.9653 | 0.9671 | 0.9631 | 0.9679 | 0.9671 | 0.9661 | 0.9669 | 0.9668 | 0.96660 |
S | 0.9665 | 0.9674 | 0.9663 | 0.9660 | 0.9636 | 0.9667 | 0.9672 | 0.9647 | 0.9661 | 0.9662 | 0.96607 | |
12 | S-S | 0.9673 | 0.9662 | 0.9679 | 0.9667 | 0.9675 | 0.9673 | 0.9679 | 0.9669 | 0.9673 | 0.9677 | 0.96727 |
S | 0.9658 | 0.9654 | 0.9673 | 0.9668 | 0.9669 | 0.9667 | 0.9677 | 0.9665 | 0.9679 | 0.9673 | 0.96683 | |
13 | S-S | 0.9672 | 0.9681 | 0.9669 | 0.9671 | 0.9678 | 0.9680 | 0.9672 | 0.9665 | 0.9679 | 0.9677 | 0.96744 |
S | 0.9656 | 0.9671 | 0.9662 | 0.9675 | 0.9680 | 0.9675 | 0.9668 | 0.9676 | 0.9673 | 0.9671 | 0.96707 | |
14 | S-S | 0.9672 | 0.9685 | 0.9675 | 0.9673 | 0.9685 | 0.9678 | 0.9674 | 0.9672 | 0.9687 | 0.9681 | 0.96782 |
S | 0.9681 | 0.9680 | 0.9670 | 0.9671 | 0.9683 | 0.9675 | 0.9666 | 0.9673 | 0.9681 | 0.9671 | 0.96751 | |
15 | S-S | 0.9685 | 0.9682 | 0.9676 | 0.9669 | 0.9673 | 0.9684 | 0.9678 | 0.9675 | 0.9682 | 0.9680 | 0.96784 |
S | 0.9684 | 0.9675 | 0.9675 | 0.9676 | 0.9672 | 0.9679 | 0.9672 | 0.9683 | 0.9681 | 0.9683 | 0.96779 | |
16 | S-S | 0.9676 | 0.9681 | 0.9683 | 0.9681 | 0.9671 | 0.9677 | 0.9685 | 0.9676 | 0.9685 | 0.9683 | 0.96798 |
S | 0.9671 | 0.9681 | 0.9684 | 0.9670 | 0.9683 | 0.9680 | 0.9683 | 0.9670 | 0.9681 | 0.9679 | 0.96782 | |
17 | S-S | 0.9683 | 0.9681 | 0.9682 | 0.9683 | 0.9684 | 0.9683 | 0.9684 | 0.9686 | 0.9686 | 0.9683 | 0.96835 |
S | 0.9682 | 0.9685 | 0.9685 | 0.9683 | 0.9678 | 0.9688 | 0.9676 | 0.9682 | 0.9690 | 0.9681 | 0.96830 | |
18 | S-S | 0.9685 | 0.9684 | 0.9687 | 0.9685 | 0.9688 | 0.9685 | 0.9688 | 0.9685 | 0.9683 | 0.9687 | 0.96857 |
S | 0.9684 | 0.9679 | 0.9688 | 0.9682 | 0.9690 | 0.9690 | 0.9685 | 0.9686 | 0.9683 | 0.9692 | 0.96859 | |
19 | S-S | 0.9687 | 0.9688 | 0.9680 | 0.9684 | 0.9684 | 0.9686 | 0.9686 | 0.9688 | 0.9685 | 0.9686 | 0.96854 |
S | 0.9686 | 0.9688 | 0.9689 | 0.9684 | 0.9688 | 0.9682 | 0.9693 | 0.9682 | 0.9690 | 0.9688 | 0.96870 |
Methodology | Type | Year | ACC | AUC |
---|---|---|---|---|
Human observer | 0.9470 | |||
Chaudhuri et al. [7] | * | 1989 | 0.8773 | 0.7878 |
Zana and Klein [19] | * | 2001 | 0.9377 | 0.8984 |
Xiaoyi and Mojon [8] | * | 2003 | 0.9212 | 0.9114 |
Abramoff et al. [34] | + | 2004 | 0.9416 | 0.9294 |
Staal et al. [35] | + | 2004 | 0.9442 | 0.952 |
Mendonca and Campilho [21] | * | 2006 | 0.9452 | |
Soares et al. [36] | + | 2006 | 0.9466 | 0.9614 |
Al-Rawi et al. [9] | * | 2007 | 0.9535 | 0.9435 |
Espona et al. [25] | * | 2007 | 0.9316 | |
Martinez-Perez et al. [30] | * | 2007 | 0.9344 | |
Perez et al. [31] | * | 2007 | 0.9220 | |
Ricci and Perfetti [38] | + | 2007 | 0.9563 | 0.9558 |
Espona et al. [26] | * | 2008 | 0.9352 | |
Zhang et al. [29] | * | 2009 | 0.9610 | |
Cinsdikici and Aydin [10] | * | 2009 | 0.9293 | 0.9407 |
Vlachos and Dermatas [32] | * | 2009 | 0.929 | |
Zhang et al. [11] | * | 2010 | 0. 9382 | |
Amin and Yan [12] | * | 2010 | 0.92 | 0.94 |
Lam et al. [24] | * | 2010 | 0.9472 | 0.9614 |
Xu and Luo [39] | + | 2010 | 0.9328 | |
Lupascu et al. [40] | + | 2010 | 0.9597 | 0.9561 |
Fraz et al. [22] | * | 2011 | 0.9430 | |
Miri and Mahloojifar [23] | * | 2011 | 0.9458 | |
Marin et al. [42] | + | 2011 | 0.9452 | 0.9588 |
Fraz et al. [41] | + | 2012 | 0.9480 | 0.9747 |
Odstrcilik et al. [13] | * | 2013 | 0.9340 | 0.9519 |
Cheng et al. [43] | + | 2014 | 0.9474 | 0.9648 |
Zhao et al. [28] | * | 2014 | 0.9509 | |
Azzopardi et al. [14] | * | 2015 | 0.9442 | 0.9614 |
Zhao et al. [27] | * | 2015 | 0.954 | 0.862 |
Roychowdhury et al. [37] | + | 2015 | 0.952 | 0.962 |
Zhang et al. [58] | ◊ | 2015 | 0.940 | |
Maji et al. [59] | ◊ | 2016 | 0.947 | |
Liskowski et al. [60] | ◊ | 2016 | 0.951 | 0.971 |
Fu et al. [61] | ◊ | 2016 | 0.952 | |
Yao et al. [62] | ◊ | 2016 | 0.936 | |
Fu et al. [63] | ◊ | 2016 | 0.947 | |
Li et al. [6] | ◊ | 2016 | 0.9527 | 0.9738 |
Zhu et al. [45] | + | 2017 | 0.9607 | |
Tan et al. [64] | ◊ | 2017 | 0.926 | |
Ngo et al. [50] | ◊ | 2017 | 0.9533 | 0.9752 |
Zhao et al. [18] | * | 2018 | 0.9592 | |
Soomro et al. [70] | ◊ | 2018 | 0.948 | 0.844 |
Guo et al. [65] | ◊ | 2018 | 0.954 | 0.979 |
Hu et al. [49] | ◊ | 2018 | 0.9533 | 0.9759 |
Yan et al. [66] | ◊ | 2019 | 0.954 | 0.975 |
Our method (11) | ◊ | 2020 | 0.9631 | 0.976 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Ao, Y.; Liu, S. Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry 2020, 12, 1067. https://doi.org/10.3390/sym12071067
Chen D, Ao Y, Liu S. Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry. 2020; 12(7):1067. https://doi.org/10.3390/sym12071067
Chicago/Turabian StyleChen, Dali, Yingying Ao, and Shixin Liu. 2020. "Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images" Symmetry 12, no. 7: 1067. https://doi.org/10.3390/sym12071067
APA StyleChen, D., Ao, Y., & Liu, S. (2020). Semi-Supervised Learning Method of U-Net Deep Learning Network for Blood Vessel Segmentation in Retinal Images. Symmetry, 12(7), 1067. https://doi.org/10.3390/sym12071067