Two-Pole Structures in QCD: Facts, Not Fantasy!
Abstract
1. Introduction
- Conventional hadrons, that is mesons and baryons as described before;
- Multiquark hadrons, such as tetraquark states (mesons from two quarks and two antiquarks), pentaquark states (baryons made from four quarks and one antiquark) and so on;
- Hadronic molecules and atomic nuclei, that is multiquark states composed of a certain number of conventional hadrons (as discussed in more detail below);
- Hybrid states, which are composed of quarks and (valence) gluons; and
- Glueballs, bound states solely made of gluons, arguably the most exotic form of matter, which has so far been elusive in all searches.
2. Methods
2.1. Limits of QCD
- Light quarks:In this limit, left- and right-handed quarks decouple which, is the chiral symmetry. As stated, it is spontaneously broken leading to the appearance of eight pseudo-Goldstone bosons. The pertinent EFT is chiral perturbation theory (CHPT) (see Section 2.2). Note that the corrections due to the quark masses are powers in .
- Heavy quarks:
- Heavy-light systems: Here, heavy quarks act as matter fields coupled to light pions and one thus can combine CHPT and HQEFT, as pioneered in [7,8,9] (see also Section 2.3).
2.2. A Factsheet on Chiral Perturbation Theory
- is symmetric under some Lie group ; here, = SU(3) SU(3).
- The ground state is asymmetric and is spontaneously broken to , leading to the the appearance of Goldstone bosons (GBs) . In QCD, = SU(3) and the Goldstone bosons are the aforementioned eight pseudoscalar mesons.
- In QCD, the matrix element of the axial-vector current , , where F is related to the pseudoscalar decay constant in the chiral limit. is a sufficient and necessary condition for spontaneous chiral symmetry breaking.
- There are no other massless strongly interacting particles.
2.3. Chiral Perturbation Theory for Heavy-Light Systems
2.4. Unitarization Schemes
2.5. Unitarized Chiral Perturbation Theory in a Finite Volume
3. The Story of the
3.1. Basic Facts
3.2. Enter Chiral Dynamics
3.3. The Two-Pole Structure
3.4. Beyond Leading Order
3.5. Where Do We Stand?
4. Meson Sector: The and Related States
4.1. Two-Pole Structure
4.2. Other Candidates
4.3. Analysis of Data
4.4. The Meson
5. Discussion and Outlook
- The story with the two-pole structure started with the , which can now be considered as established. However, the position of lighter pole close to the threshold needs to be determined better, whereas the higher pole close to the threshold is pretty well pinned down. It is comforting to note that the re-analysis of the Jülich meson-exchange model from the 1990s also confirmed the two-pole structure of the (see [99] and references therein). I again point out that approaches that do not allow for the dynamical generation of resonances, e.g., the BnGa model, are insufficient for describing the whole hadron spectrum.
- Further support of the two-pole scenario comes from charmed baryons. Recently, an analysis of the LHCb data on in the near--threshold region also revealed a two-pole structure of the when isospin-breaking is taken into account [100].
- The spectrum of excited charmed mesons, made from a heavy c quark and a light quark, offers further support of the two-pole structure and the dynamical generation of hadron resonances. Here, a beautiful interplay of experimental results, unitarized chiral perturbation theory and lattice QCD gives very strong indications that this picture is indeed correct. Further lattice calculations and the measurement of the corresponding B-mesons will serve as further tests.
- This leads to a new paradigm in hadron physics: The hadron spectrum must not be viewed as a collection of quark model states, but rather as a manifestation of a more complex dynamics that leads to an intricate pattern of various types of states that can only be understood by an interplay of theory and experiment (cf. the light scalar mesons or the states discussed here).
- The dynamical generation of hadron states through hadron–hadron interactions ties together nuclear and particle physics, as these molecular compounds bear resemblance to the light nuclei, the deuteron, the triton and so on. Therefore, such molecular states were called “deusons” by Törnquist, one of the pioneers in the field of hadronic molecules [101].
Funding
Acknowledgments
Conflicts of Interest
References
- Gell-Mann, M. A Schematic Model of Baryons and Mesons. Phys. Lett. 1964, 8, 214–215. [Google Scholar] [CrossRef]
- Zweig, G. An SU(3) Model for Strong Interaction Symmetry and Its Breaking. Version 1, CERN-TH-401. 1964. Available online: https://cds.cern.ch/record/352337 (accessed on 10 May 2020).
- Godfrey, S.; Isgur, N. Mesons in a Relativized Quark Model with Chromodynamics. Phys. Rev. D 1985, 32, 189. [Google Scholar] [CrossRef] [PubMed]
- Particle Data Group. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Neubert, M. Heavy quark symmetry. Phys. Rept. 1994, 245, 259. [Google Scholar] [CrossRef]
- Manohar, A.V.; Wise, M.B. Heavy Quark Physics, 1st ed.; Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology; Cambridge University Press: Cambridge, UK, 2000; Volume 10. [Google Scholar]
- Burdman, G.; Donoghue, J.F. Union of chiral and heavy quark symmetries. Phys. Lett. B 1992, 280, 287. [Google Scholar] [CrossRef]
- Wise, M.B. Chiral perturbation theory for hadrons containing a heavy quark. Phys. Rev. D 1992, 45, R2188. [Google Scholar] [CrossRef]
- Yan, T.M.; Cheng, H.Y.; Cheung, C.Y.; Lin, G.L.; Lin, Y.C.; Yu, H.L. Heavy quark symmetry and chiral dynamics. Phys. Rev. D 1992, 46, 1148, Erratum in 1997, 55, 5851. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142–210. [Google Scholar] [CrossRef]
- Weinberg, S. Phenomenological Lagrangians. Physica A 1979, 96, 327–340. [Google Scholar] [CrossRef]
- Ecker, G. Chiral perturbation theory. Prog. Part. Nucl. Phys. 1995, 35, 1–80. [Google Scholar] [CrossRef]
- Pich, A. Chiral perturbation theory. Rep. Prog. Phys. 1995, 58, 563. [Google Scholar] [CrossRef]
- Bernard, V.; Meißner, U.-G. Chiral perturbation theory. Ann. Rev. Nucl. Part. Sci. 2007, 57, 33–60. [Google Scholar] [CrossRef]
- Gasser, J.; Meißner, U.-G. Chiral expansion of pion form-factors beyond one loop. Nucl. Phys. B 1991, 357, 90–128. [Google Scholar] [CrossRef]
- Jenkins, E.E.; Manohar, A.V. Baryon chiral perturbation theory using a heavy fermion Lagrangian. Phys. Lett. B 1991, 255, 558–562. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Kambor, J.; Meißner, U.-G. Chiral structure of the nucleon. Nucl. Phys. B 1992, 388, 315–345. [Google Scholar] [CrossRef]
- Becher, T.; Leutwyler, H. Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 1999, 9, 643–671. [Google Scholar] [CrossRef]
- Fuchs, T.; Gegelia, J.; Japaridze, G.; Scherer, S. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D 2003, 68, 056005. [Google Scholar] [CrossRef]
- Bernard, V.; Kaiser, N.; Meißner, U.-G. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 1995, 4, 193–344. [Google Scholar] [CrossRef]
- Bernard, V. Chiral Perturbation Theory and Baryon Properties. Prog. Part. Nucl. Phys. 2008, 60, 82–160. [Google Scholar] [CrossRef]
- Scherer, S.; Schindler, M.R. Chiral perturbation theory for baryons. Lect. Notes Phys. 2012, 830, 145–214. [Google Scholar] [CrossRef]
- Cheng, H.; Cheung, C.; Lin, G.; Lin, Y.; Yan, T.; Yu, H. Corrections to chiral dynamics of heavy hadrons: SU(3) symmetry breaking. Phys. Rev. D 1994, 49, 5857–5881. [Google Scholar] [CrossRef]
- Lutz, M.F.; Soyeur, M. Radiative and isospin-violating decays of Ds-mesons in the hadrogenesis conjecture. Nucl. Phys. A 2008, 813, 14–95. [Google Scholar] [CrossRef]
- Guo, F.K.; Hanhart, C.; Krewald, S.; Meißner, U.-G. Subleading contributions to the width of the D*(s0)(2317). Phys. Lett. B 2008, 666, 251–255. [Google Scholar] [CrossRef]
- Liu, L.; Orginos, K.; Guo, F.K.; Hanhart, C.; Meißner, U.-G. Interactions of charmed mesons with light pseudoscalar mesons from lattice QCD and implications on the nature of the (2317). Phys. Rev. D 2013, 87, 014508. [Google Scholar] [CrossRef]
- Savage, M.J.; Wise, M.B. SU(3) Predictions for Nonleptonic B Meson Decays. Phys. Rev. D 1989, 39, 3346. [Google Scholar] [CrossRef] [PubMed]
- Dobado, A.; Herrero, M.J.; Truong, T.N. Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering. Phys. Lett. B 1990, 235, 134–140. [Google Scholar] [CrossRef]
- Oller, J.A.; Oset, E.; Ramos, A. Chiral unitary approach to meson meson and meson - baryon interactions and nuclear applications. Prog. Part. Nucl. Phys. 2000, 45, 157–242. [Google Scholar] [CrossRef]
- Oller, J. Coupled-channel approach in hadron-hadron scattering. Prog. Part. Nucl. Phys. 2020, 110, 103728. [Google Scholar] [CrossRef]
- Döring, M.; Meißner, U.-G.; Oset, E.; Rusetsky, A. Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector. Eur. Phys. J. A 2011, 47, 139. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Spontaneously Broken Symmetries: Effective Lagrangians at Finite Volume. Nucl. Phys. B 1988, 307, 763–778. [Google Scholar] [CrossRef]
- Dalitz, R.H.; Tuan, S.F. A possible resonant state in pion-hyperon scattering. Phys. Rev. Lett. 1959, 2, 425. [Google Scholar] [CrossRef]
- Kim, J.K. Low Energy K- p Interaction of the 1405 MeV Resonance as KbarN Bound State. Phys. Rev. Lett. 1965, 14, 29. [Google Scholar] [CrossRef]
- Hemingway, R.J. Production of Λ(1405) in K−p Reactions at 4.2-GeV/c. Nucl. Phys. B 1985, 253, 742–752. [Google Scholar] [CrossRef]
- Moriya, K.; Schumacher, R.A.; Aghasyan, M.; Amaryan, M.J.; Anderson, M.D.; Pereira, S.A.; Ball, J.; Baltzell, N.A.; Battaglieri, M.; Bellis, M.; et al. Spin and parity measurement of the Λ(1405) baryon. Phys. Rev. Lett. 2014, 112, 082004. [Google Scholar] [CrossRef]
- Fink, P.J., Jr.; He, G.; Landau, R.H.; Schnick, J.W. Bound States, Resonances and Poles in Low-energy KN Interaction Models. Phys. Rev. C 1990, 41, 2720. [Google Scholar] [CrossRef]
- Kaiser, N.; Siegel, P.B.; Weise, W. Chiral dynamics and the low-energy kaon - nucleon interaction. Nucl. Phys. A 1995, 594, 325–345. [Google Scholar] [CrossRef]
- Kaiser, N.; Waas, T.; Weise, W. SU(3) chiral dynamics with coupled channels: Eta and kaon photoproduction. Nucl. Phys. A 1997, 612, 297–320. [Google Scholar] [CrossRef]
- Oset, E.; Ramos, A. Nonperturbative chiral approach to s wave KN interactions. Nucl. Phys. A 1998, 635, 99. [Google Scholar] [CrossRef]
- Nacher, J.; Oset, E.; Toki, H.; Ramos, A. Radiative production of the Lambda(1405) resonance in K- collisions on protons and nuclei. Phys. Lett. B 1999, 461, 299–306. [Google Scholar] [CrossRef]
- Borasoy, B.; Bruns, P.C.; Meißner, U.-G.; Nissler, R. Gauge invariance in two-particle scattering. Phys. Rev. C 2005, 72, 065201. [Google Scholar] [CrossRef]
- Borasoy, B.; Bruns, P.; Meißner, U.-G.; Nissler, R. A Gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton. Eur. Phys. J. A 2007, 34, 161–183. [Google Scholar] [CrossRef][Green Version]
- Oller, J.A.; Meißner, U.-G. Chiral dynamics in the presence of bound states: Kaon nucleon interactions revisited. Phys. Lett. B 2001, 500, 263–272. [Google Scholar] [CrossRef]
- Jido, D.; Hosaka, A.; Nacher, J.C.; Oset, E.; Ramos, A. Magnetic moments of the Λ(1405) and Λ(1670) resonances. Phys. Rev. C 2002, 66, 025203. [Google Scholar] [CrossRef]
- Garcia-Recio, C.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.J. S = −1 meson baryon unitarized coupled channel chiral perturbation theory and the S(01) Lambda(1405) and Lambda(1670) resonances. Phys. Rev. D 2003, 67, 076009. [Google Scholar] [CrossRef]
- Jido, D.; Oller, J.A.; Oset, E.; Ramos, A.; Meißner, U.-G. Chiral dynamics of the two Λ(1405) states. Nucl. Phys. A 2003, 725, 181–200. [Google Scholar] [CrossRef]
- Magas, V.; Oset, E.; Ramos, A. Evidence for the two pole structure of the Lambda(1405) resonance. Phys. Rev. Lett. 2005, 95, 052301. [Google Scholar] [CrossRef]
- Ikeda, Y.; Hyodo, T.; Weise, W. Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints. Nucl. Phys. A 2012, 881, 98–114. [Google Scholar] [CrossRef]
- Guo, Z.H.; Oller, J.A. Meson-baryon reactions with strangeness -1 within a chiral framework. Phys. Rev. C 2013, 87, 035202. [Google Scholar] [CrossRef]
- Mai, M.; Meißner, U.-G. New insights into antikaon-nucleon scattering and the structure of the Lambda(1405). Nucl. Phys. A 2013, 900, 51–64. [Google Scholar] [CrossRef]
- Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.M.; Cargnelli, M.; Corradi, G.; Curceanu, C.; Fiorini, C.; Frizzi, T.; Ghio, F.; et al. A New Measurement of Kaonic Hydrogen X-rays. Phys. Lett. B 2011, 704, 113–117. [Google Scholar] [CrossRef]
- Meißner, U.-G.; Raha, U.; Rusetsky, A. Spectrum and decays of kaonic hydrogen. Eur. Phys. J. C 2004, 35, 349–357. [Google Scholar] [CrossRef]
- Mai, M.; Meißner, U.-G. Constraints on the chiral unitary KN amplitude from πΣK+ photoproduction data. Eur. Phys. J. A 2015, 51, 30. [Google Scholar] [CrossRef]
- Moriya, K.; Schumacher, R.A.; Adhikari, K.P.; Adikaram, D.; Aghasyan, M.; Anderson, M.D.; Pereira, S.A.; Ball, J.; Baltzell, N.A.; Battaglieri, M.; et al. Measurement of the Σπ photoproduction line shapes near the Λ(1405). Phys. Rev. C 2013, 87, 035206. [Google Scholar] [CrossRef]
- Roca, L.; Oset, E. Λ(1405) poles obtained from π0Σ0 photoproduction data. Phys. Rev. C 2013, 87, 055201. [Google Scholar] [CrossRef]
- Patrignani, C.P.D.G.; Weinberg, D.H.; Woody, C.L.; Chivukula, R.S.; Buchmueller, O.; Kuyanov, Y.V.; Blucher, E.; Willocq, S.; Höcker, A.; Lippmann, C.; et al. Review of Particle Physics. Chin. Phys. C 2016, 40, 100001. [Google Scholar] [CrossRef]
- Cieply, A.; Mai, M.; Meißner, U.-G.; Smejkal, J. On the pole content of coupled channels chiral approaches used for the KN system. Nucl. Phys. A 2016, 954, 17–40. [Google Scholar] [CrossRef]
- Cieply, A.; Smejkal, J. Chirally motivated KN amplitudes for in-medium applications. Nucl. Phys. A 2012, 881, 115. [Google Scholar] [CrossRef]
- Mares, J.; Barnea, N.; Cieply, A.; Friedman, E.; Gal, A.; Gazda, D. Calculations of K-nuclear quasi-bound states using chiral KN amplitudes. EPJ Web Conf. 2014, 66, 09012. [Google Scholar] [CrossRef]
- Kamiya, Y.; Miyahara, K.; Ohnishi, S.; Ikeda, Y.; Hyodo, T.; Oset, E.; Weise, W. Antikaon-nucleon interaction and Λ(1405) in chiral SU(3) dynamics. Nucl. Phys. A 2016, 954, 41–57. [Google Scholar] [CrossRef]
- Hoshino, T.; Ohnishi, S.; Horiuchi, W.; Hyodo, T.; Weise, W. Constraining the KN interaction from the 1S level shift of kaonic deuterium. Phys. Rev. C 2017, 96, 045204. [Google Scholar] [CrossRef]
- Meißner, U.-G.; Raha, U.; Rusetsky, A. Kaon-nucleon scattering lengths from kaonic deuterium experiments. Eur. Phys. J. C 2006, 47, 473–480. [Google Scholar] [CrossRef][Green Version]
- Curceanu, C.; Guaraldo, C.; Sirghi, D.; Amirkhani, A.; Baniahmad, A.; Bazzi, M.; Bellotti, G.; Bosnar, D.; Bragadireanu, M.; Cargnelli, M.; et al. Kaonic Atoms to Investigate Global Symmetry Breaking. Symmetry 2020, 12, 547. [Google Scholar] [CrossRef]
- Sadasivan, D.; Mai, M.; Döring, M. S- and p-wave structure of S=-1 meson-baryon scattering in the resonance region. Phys. Lett. B 2019, 789, 329–335. [Google Scholar] [CrossRef]
- Caro Ramon, J.; Kaiser, N.; Wetzel, S.; Weise, W. Chiral SU(3) dynamics with coupled channels: Inclusion of P wave multipoles. Nucl. Phys. A 2000, 672, 249–269. [Google Scholar] [CrossRef]
- Revai, J. Are the chiral based KN potentials really energy dependent? Few Body Syst. 2018, 59, 49. [Google Scholar] [CrossRef]
- Bruns, P.C.; Cieply, A. Importance of chiral constraints for the pole content of the KN scattering amplitude. Nucl. Phys. A 2020, 996, 121702. [Google Scholar] [CrossRef]
- Anisovich, A.V.; Sarantsev, A.V.; Nikonov, V.A.; Burkert, V.; Schumacher, R.A.; Thoma, U.; Klempt, E. Hyperon I: Study of the Λ(1405). arXiv 2019, arXiv:1905.05456. [Google Scholar]
- Anisovich, A.V.; Sarantsev, A.V.; Nikonov, V.A.; Burkert, V.; Schumacher, R.A.; Thoma, U.; Klempt, E. Hyperon III: K−p-πΣ coupled-channel dynamics in the Λ(1405) mass region. Eur. Phys. J. A 2020, 56, 139. [Google Scholar] [CrossRef]
- Bayar, M.; Pavao, R.; Sakai, S.; Oset, E. Role of the triangle singularity in Λ(1405) production in the π−p→K0πΣ and pp→pK+πΣ processes. Phys. Rev. C 2018, 97, 035203. [Google Scholar] [CrossRef]
- Lu, H.Y.; Schumacher, R.A.; Adhikari, K.P.; Adikaram, D.; Aghasyan, M.; Amaryan, M.J.; Pereira, S.A.; Ball, J.; Battaglieri, M.; Batourine, V.; et al. First Observation of the Λ(1405) Line Shape in Electroproduction. Phys. Rev. C 2013, 88, 045202. [Google Scholar] [CrossRef]
- Cahn, R.; Landshoff, P. Mystery of the Delta (980). Nucl. Phys. B 1986, 266, 451–467. [Google Scholar] [CrossRef]
- Aubert, B.; Barate, R.; Boutigny, D.; Gaillard, J.M.; Hicheur, A.; Karyotakis, Y.; Lees, J.P.; Robbe, P.; Tisserand, V.; Zghiche, A.; et al. Observation of a narrow meson decaying to Ds+π0 at a mass of 2.32-GeV/c2. Phys. Rev. Lett. 2003, 90, 242001. [Google Scholar] [CrossRef] [PubMed]
- Belle Collaboration. Study of B−→D**0π− (D**0→D(*) + π−) decays. Phys. Rev. D 2004, 69, 112002. [Google Scholar] [CrossRef]
- Link, J.M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Göbel, C.; Machado, A.A.; Magnin, J.; Massafferri, A.; De Miranda, J.M.; Pepe, I.M.; et al. Measurement of masses and widths of excited charm mesons D(2)* and evidence for broad states. Phys. Lett. B 2004, 586, 11–20. [Google Scholar] [CrossRef]
- Guo, F.; Hanhart, C.; Meißner, U.-G.; Wang, Q.; Zhao, Q.; Zou, B. Hadronic molecules. Rev. Mod. Phys. 2018, 90, 015004. [Google Scholar] [CrossRef]
- Moir, G.; Peardon, M.; Ryan, S.M.; Thomas, C.E.; Wilson, D.J. Coupled-Channel Dπ, Dη and DsK Scattering from Lattice QCD. JHEP 2016, 10, 011. [Google Scholar] [CrossRef]
- Albaladejo, M.; Fernandez-Soler, P.; Guo, F.; Nieves, J. Two-pole structure of the (2400). Phys. Lett. B 2017, 767, 465–469. [Google Scholar] [CrossRef]
- Kolomeitsev, E.; Lutz, M. On Heavy light meson resonances and chiral symmetry. Phys. Lett. B 2004, 582, 39–48. [Google Scholar] [CrossRef]
- Guo, F.; Shen, P.; Chiang, H.; Ping, R.; Zou, B. Dynamically generated 0+ heavy mesons in a heavy chiral unitary approach. Phys. Lett. B 2006, 641, 278–285. [Google Scholar] [CrossRef]
- Guo, F.; Hanhart, C.; Meißner, U.-G. Interactions between heavy mesons and Goldstone bosons from chiral dynamics. Eur. Phys. J. A 2009, 40, 171–179. [Google Scholar] [CrossRef]
- Du, M.L.; Albaladejo, M.; Fernandez-Soler, P.; Guo, F.K.; Hanhart, C.; Meißner, U.-G.; Nieves, J.; Yao, D.L. Towards a new paradigm for heavy-light meson spectroscopy. Phys. Rev. D 2018, 98, 094018. [Google Scholar] [CrossRef]
- David, W. (Cambrige University, UK). Personal communication, 2019.
- Cleven, M.; Guo, F.K.; Hanhart, C.; Meißner, U.-G. Light meson mass dependence of the positive parity heavy-strange mesons. Eur. Phys. J. A 2011, 47, 19. [Google Scholar] [CrossRef]
- Bardeen, W.A.; Eichten, E.J.; Hill, C.T. Chiral multiplets of heavy-light mesons. Phys. Rev. D 2003, 68, 054024. [Google Scholar] [CrossRef]
- Nowak, M.A.; Rho, M.; Zahed, I. Chiral doubling of heavy light hadrons: BABAR 2317-MeV/c2 and CLEO 2463-MeV/c2 discoveries. Acta Phys. Pol. B 2004, 35, 2377–2392. [Google Scholar]
- Mehen, T.; Springer, R.P. Even- and odd-parity charmed meson masses in heavy hadron chiral perturbation theory. Phys. Rev. D 2005, 72, 034006. [Google Scholar] [CrossRef]
- Guo, F.; Shen, P.; Chiang, H. Dynamically generated 1+ heavy mesons. Phys. Lett. B 2007, 647, 133–139. [Google Scholar] [CrossRef]
- Bali, G.S.; Collins, S.; Cox, A.; Schäfer, A. Masses and decay constants of the (2317) and Ds1(2460) from Nf=2 lattice QCD close to the physical point. Phys. Rev. D 2017, 96, 074501. [Google Scholar] [CrossRef]
- Lang, C.B.; Mohler, D.; Prelovsek, S.; Woloshyn, R.M. Predicting positive parity Bs mesons from lattice QCD. Phys. Lett. B 2015, 750, 17–21. [Google Scholar] [CrossRef]
- Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; et al. Amplitude analysis of B−→D+π−π− decays. Phys. Rev. D 2016, 94, 072001. [Google Scholar] [CrossRef]
- Du, M.L.; Guo, F.K.; Meißner, U.-G. Implications of chiral symmetry on S-wave pionic resonances and the scalar charmed mesons. Phys. Rev. D 2019, 99, 114002. [Google Scholar] [CrossRef]
- Roca, L.; Oset, E.; Singh, J. Low lying axial-vector mesons as dynamically generated resonances. Phys. Rev. D 2005, 72, 014002. [Google Scholar] [CrossRef]
- Geng, L.S.; Oset, E.; Roca, L.; Oller, J.A. Clues for the existence of two K1(1270) resonances. Phys. Rev. D 2007, 75, 014017. [Google Scholar] [CrossRef]
- Daum, C.; Hertzberger, L.; Hoogland, W.; Peters, S.; Van Deurzen, P.; Chabaud, V.; Gonzalez-Arroyo, A.; Hyams, B.; Tiecke, H.; Weilhammer, P.; et al. Diffractive Production of Strange Mesons at 63 GeV. Nucl. Phys. B 1981, 187, 1–41. [Google Scholar] [CrossRef]
- Wang, G.Y.; Roca, L.; Oset, E. Discerning the two K1(1270) poles in D0→π+VP decay. Phys. Rev. D 2019, 100, 074018. [Google Scholar] [CrossRef]
- Wang, G.Y.; Roca, L.; Wang, E.; Liang, W.H.; Oset, E. Signatures of the two K1(1270) poles in D+→νe+VP decay. Eur. Phys. J. C 2020, 80, 388. [Google Scholar] [CrossRef]
- Haidenbauer, J.; Krein, G.; Meißner, U.-G.; Tolos, L. DN interaction from meson exchange. Eur. Phys. J. A 2011, 47, 18. [Google Scholar] [CrossRef]
- Sakai, S.; Guo, F.; Kubis, B. Extraction of ND scattering lengths from the Λb→π−pD0 decay and properties of the Σc(2800)+. arXiv 2020, arXiv:2004.09824. [Google Scholar]
- Tornqvist, N.A. From the deuteron to deusons, an analysis of deuteron-like meson meson bound states. Z. Phys. C 1994, 61, 525–537. [Google Scholar] [CrossRef]
M (MeV) | (MeV) | |||
---|---|---|---|---|
Lower Pole | Higher Pole | RPP | |
---|---|---|---|
- | |||
- |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meißner, U.-G. Two-Pole Structures in QCD: Facts, Not Fantasy! Symmetry 2020, 12, 981. https://doi.org/10.3390/sym12060981
Meißner U-G. Two-Pole Structures in QCD: Facts, Not Fantasy! Symmetry. 2020; 12(6):981. https://doi.org/10.3390/sym12060981
Chicago/Turabian StyleMeißner, Ulf-G. 2020. "Two-Pole Structures in QCD: Facts, Not Fantasy!" Symmetry 12, no. 6: 981. https://doi.org/10.3390/sym12060981
APA StyleMeißner, U.-G. (2020). Two-Pole Structures in QCD: Facts, Not Fantasy! Symmetry, 12(6), 981. https://doi.org/10.3390/sym12060981