Applications of Symmetry Breaking in Plasmonics
Abstract
1. Introduction
2. What Is Symmetry Breaking in Plasmonics?
3. Applications of Symmetry Breaking in Plasmonics
3.1. Applications to Plasmonic Devices
3.2. Applications to Non-Linear Optics
3.3. Applications to Chiral Plasmonics
3.4. Applications to Chemistry and Plasmonic Sensing
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haffner, C.; Heni, W.; Fedoryshyn, Y.; Niegemann, J.; Melikyan, A.; Elder, D.L.; Baeuerle, B.; Salamin, Y.; Josten, A.; Koch, U.; et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 2015, 9, 525–528. [Google Scholar] [CrossRef]
- Ayata, M.; Fedoryshyn, Y.; Heni, W.; Baeuerle, B.; Josten, A.; Zahner, M.; Koch, U.; Salamin, Y.; Hoessbacher, C.; Haffner, C.; et al. High-speed plasmonic modulator in a single metal layer. Science 2017, 358, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Magno, G.; Bélier, B.; Barbillon, G. Gold thickness impact on the enhancement of SERS detection in low-cost Au/Si nanosensors. J. Mater. Sci. 2017, 52, 13650–13656. [Google Scholar] [CrossRef]
- Salamin, Y.; Ma, P.; Baeuerle, B.; Emboras, A.; Fedoryshyn, Y.; Heni, W.; Cheng, B.; Josten, A.; Leuthold, J. 100 GHz Plasmonic Photodetector. ACS Photonics 2018, 5, 3291–3297. [Google Scholar] [CrossRef]
- Thomaschewski, M.; Yang, Y.Q.; Bozhevolnyi, S.I. Ultra-compact branchless plasmonic interferometers. Nanoscale 2018, 10, 16178–16183. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Ivanov, A.; Lagarkov, A.; Barbillon, G. Light Concentration by Metal-Dielectric Micro- Resonators for SERS Sensing. Materials 2019, 12, 103. [Google Scholar] [CrossRef]
- Chen, X.; Fang, J.; Zhang, X.D.; Zhao, Y.; Gu, M. Optical/Electrical Integrated Design of Core-Shell Aluminum-Based Plasmonic Nanostructures for Record-Breaking Efficiency Enhancements in Photovoltaic Devices. ACS Photonics 2017, 4, 2102–2110. [Google Scholar] [CrossRef]
- Li, M.Z.; Guler, U.; Li, Y.A.; Rea, A.; Tanyi, E.K.; Kim, Y.; Noginov, M.A.; Song, Y.L.; Boltasseva, A.; Shalaev, V.M.; et al. Plasmonic Biomimetic Nanocomposite with Spontaneous Subwavelength Structuring as Broadband Absorbers. ACS Energy Lett. 2018, 3, 1578–1583. [Google Scholar] [CrossRef]
- Shao, W.J.; Liang, Z.Q.; Guan, T.F.; Chen, J.M.; Wang, Z.F.; Wu, H.H.; Zheng, J.Z.; Abdulhalim, I.; Jiang, L. One-step integration of a multiple-morphology gold nanoparticle array on a TiO2 film via a facile sonochemical method for highly efficient organic photovoltaics. J. Mater. Chem. A 2018, 6, 8419–8429. [Google Scholar] [CrossRef]
- Vangelidis, I.; Theodosi, A.; Beliatis, M.J.; Gandhi, K.K.; Laskarakis, A.; Patsalas, P.; Logothetidis, S.; Silva, S.R.P.; Lidorikis, E. Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries. ACS Photonics 2018, 5, 1440–1452. [Google Scholar] [CrossRef]
- Pichon, B.P.; Barbillon, G.; Marie, P.; Pauly, M.; Begin-Colin, S. Iron oxide magnetic nanoparticles used as probing agents to study the nanostructure of mixed self-assembled monolayers. Nanoscale 2011, 3, 4696–4705. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Su, S.; Xu, T.T.; Zhong, Y.L.; Zapien, J.A.; Li, J.; Fan, C.H.; Lee, S.T. Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today 2011, 6, 122–130. [Google Scholar] [CrossRef]
- Huang, J.-A.; Zhao, Y.-Q.; Zhang, X.-J.; He, L.-F.; Wong, T.-L.; Chui, Y.-S.; Zhang, W.-J.; Lee, S.-T. Ordered Ag/Si Nanowires Array: Wide-Range Surface-Enhanced Raman Spectroscopy for Reproducible Biomolecule Detection. Nano Lett. 2013, 13, 5039–5045. [Google Scholar] [CrossRef] [PubMed]
- Dalstein, L.; Ben Haddada, M.; Barbillon, G.; Humbert, C.; Tadjeddine, A.; Boujday, S.; Busson, B. Revealing the Interplay between Adsorbed Molecular Layers and Gold Nanoparticles by Linear and Nonlinear Optical Properties. J. Phys. Chem. C 2015, 119, 17146–17155. [Google Scholar] [CrossRef]
- Bryche, J.-F.; Bélier, B.; Bartenlian, B.; Barbillon, G. Low-cost SERS substrates composed of hybrid nanoskittles for a highly sensitive sensing of chemical molecules. Sens. Actuators B 2017, 239, 795–799. [Google Scholar] [CrossRef]
- Tian, X.; Lin, Y.; Dong, J.; Zhang, Y.; Wu, S.; Liu, S.; Zhang, Y.; Li, J.; Tian, Z. Synthesis of Ag Nanorods with Highly Tunable Plasmonics toward Optimal Surface-Enhanced Raman Scattering Substrates Self-Assembled at Interfaces. Adv. Opt. Mater. 2017, 5, 1700581. [Google Scholar] [CrossRef]
- Chen, J.; Gan, F.; Wang, Y.; Li, G. Plasmonic Sensing and Modulation Based on Fano Resonances. Adv. Opt. Mater. 2018, 6, 1701152. [Google Scholar] [CrossRef]
- Dolci, M.; Bryche, J.-F.; Leuvrey, C.; Zafeiratos, S.; Gree, S.; Begin-Colin, S.; Barbillon, G.; Pichon, B.P. Robust clicked assembly based on iron oxide nanoparticles for a new type of SPR biosensor. J. Mater. Chem. C 2018, 6, 9102–9110. [Google Scholar] [CrossRef]
- Lu, G.; Xu, J.; Wen, T.; Zhang, W.; Zhao, J.; Hu, A.; Barbillon, G.; Gong, Q. Hybrid Metal-Dielectric Nano-Aperture Antenna for Surface Enhanced Fluorescence. Materials 2018, 11, 1435. [Google Scholar] [CrossRef]
- Magno, G.; Bélier, B.; Barbillon, G. Al/Si nanopillars as very sensitive SERS substrates. Materials 2018, 11, 1534. [Google Scholar] [CrossRef]
- Barbillon, G. Fabrication and SERS Performances of Metal/Si and Metal/ZnO Nanosensors: A Review. Coatings 2019, 9, 86. [Google Scholar] [CrossRef]
- Humbert, C.; Noblet, T.; Dalstein, L.; Busson, B.; Barbillon, G. Sum-Frequency Generation Spectroscopy of Plasmonic Nanomaterials: A Review. Materials 2019, 12, 836. [Google Scholar] [CrossRef] [PubMed]
- Zambrana-Puyalto, X.; Ponzellini, P.; Maccaferri, N.; Tessarolo, E.; Pelizzo, M.G.; Zhang, W.; Barbillon, G.; Lu, G.; Garoli, D. A hybrid metal-dielectric zero mode waveguide for enhanced single molecule detection. Chem. Commun. 2019, 55, 9725–9728. [Google Scholar] [CrossRef] [PubMed]
- Barbillon, G.; Ivanov, A.; Sarychev, A.K. Hybrid Au/Si Disk-Shaped Nanoresonators on Gold Film for Amplified SERS Chemical Sensing. Nanomaterials 2019, 9, 1588. [Google Scholar] [CrossRef] [PubMed]
- Graniel, O.; Iatsunskyi, I.; Coy, E.; Humbert, C.; Barbillon, G.; Michel, T.; Maurin, D.; Balme, S.; Miele, P.; Bechelany, M. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. J. Mater. Chem. C 2019, 7, 15066–15073. [Google Scholar] [CrossRef]
- Tomyshev, K.A.; Tazhetdinova, D.K.; Manuilovich, E.S.; Butov, O.V. High-resolution fiber optic surface plasmon resonance sensor for biomedical applications. J. Appl. Phys. 2018, 124, 113106. [Google Scholar] [CrossRef]
- Cai, S.S.; Gonzalez-Vila, A.; Zhang, X.J.; Guo, T.; Caucheteur, C. Palladium-coated plasmonic optical fiber gratings for hydrogen detection. Opt. Lett. 2019, 44, 4483–4486. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; pp. 3–220. [Google Scholar]
- Enoch, S.; Bonod, N. Plasmonics: From Basics to Advanced Topics; Springer: Heidelberg, Germany, 2012; pp. 3–317. [Google Scholar]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef]
- Li, Z.; Butun, S.; Aydin, K. Ultranarrow Band Absorbers Based on Surface Lattice Resonances in Nanostructured Metal Surfaces. ACS Nano 2014, 8, 8242–8248. [Google Scholar] [CrossRef]
- Sarkar, M.; Besbes, M.; Moreau, J.; Bryche, J.-F.; Olivéro, A.; Barbillon, G.; Coutrot, A.-L.; Bartenlian, B.; Canva, M. Hybrid Plasmonic Mode by Resonant Coupling of Localized Plasmons to Propagating Plasmons in a Kretschmann Configuration. ACS Photonics 2015, 2, 237–245. [Google Scholar] [CrossRef]
- Sobhani, A.; Manjavacas, A.; Cao, Y.; McClain, M.J.; Javier Garcia de Abajo, F.; Nordlander, P.; Halas, N.J. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film. Nano Lett. 2015, 15, 6946–6951. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Wang, Z.; Whittaker, J.; Lopez-Royo, F.; Yang, Y.; Zayats, A.V. Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers. J. Mater. Chem. C 2017, 5, 4075–4084. [Google Scholar] [CrossRef]
- Barbillon, G.; Bijeon, J.-L.; Lérondel, G.; Plain, J.; Royer, P. Detection of chemical molecules with integrated plasmonic glass nanotips. Surf. Sci. 2008, 602, L119–L122. [Google Scholar] [CrossRef]
- Dhawan, A.; Duval, A.; Nakkach, M.; Barbillon, G.; Moreau, J.; Canva, M.; Vo-Dinh, T. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Nanotechnology 2011, 22, 165301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, S.; Wang, L.; Zhao, J.; Zhu, Z.; Liu, B.; Zhong, J.; Sun, X. Large-scale uniform Au nanodisc arrays fabricated via X-ray interference lithography for reproducible and sensitive SERS substrate. Nanotechnology 2014, 25, 245301. [Google Scholar] [CrossRef]
- Guisbert Quilis, N.; Lequeux, M.; Venugopalan, P.; Khan, I.; Knoll, W.; Boujday, S.; Lamy de la Chapelle, M.; Dostalek, J. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS. Nanoscale 2018, 10, 10268. [Google Scholar] [CrossRef]
- Hwang, J.S.; Yang, M. Sensitive and Reproducible Gold SERS Sensor Based on Interference Lithography and Electrophoretic Deposition. Sensors 2018, 18, 4076. [Google Scholar] [CrossRef]
- Hentschel, M.; Schäferling, M.; Duan, X.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735. [Google Scholar] [CrossRef]
- Henzie, J.; Lee, J.; Lee, M.H.; Hasan, W.; Odom, T.W. Nanofabrication of Plasmonic Structures. Annu. Rev. Phys. Chem. 2009, 60, 147–165. [Google Scholar] [CrossRef]
- Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P.M. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisc arrays. Nano Lett. 2008, 8, 1923–1928. [Google Scholar] [CrossRef]
- Faure, A.C.; Barbillon, G.; Ou, M.; Ledoux, G.; Tillement, O.; Roux, S.; Fabregue, D.; Descamps, A.; Bijeon, J.-L.; Marquette, C.A.; et al. Core/shell nanoparticles for multiple biological detection with enhanced sensitivity and kinetics. Nanotechnology 2008, 19, 485103. [Google Scholar] [CrossRef] [PubMed]
- Bryche, J.-F.; Gillibert, R.; Barbillon, G.; Sarkar, M.; Coutrot, A.-L.; Hamouda, F.; Aassime, A.; Moreau, J.; de La Chapelle, M.L.; Bartenlian, B.; et al. Density effect of gold nanodiscs on the SERS intensity for a highly sensitive detection of chemical molecules. J. Mater. Sci. 2015, 50, 6601–6607. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Bykov, I.V.; Boginskaya, I.A.; Ivanov, A.V.; Kurochkin, I.N.; Lagarkov, A.N.; Nechaeva, N.L.; Ryzhikov, I.A. Metal-dielectric optical resonance in metasurfaces and SERS effect. Opt. Quantum Electron. 2020, 52, 26. [Google Scholar] [CrossRef]
- Masson, J.F.; Gibson, K.F.; Provencher-Girard, A. Surface-enhanced Raman spectroscopy amplification with film over etched nanospheres. J. Phys. Chem. C 2010, 114, 22406–22412. [Google Scholar] [CrossRef]
- Bechelany, M.; Brodard, P.; Elias, J.; Brioude, A.; Michler, J.; Philippe, L. Simple Synthetic Route for SERS-Active Gold Nanoparticles Substrate with Controlled Shape and Organization. Langmuir 2010, 26, 14364–14371. [Google Scholar] [CrossRef] [PubMed]
- Bryche, J.-F.; Tsigara, A.; Bélier, B.; Lamy de la Chapelle, M.; Canva, M.; Bartenlian, B.; Barbillon, G. Surface enhanced Raman scattering improvement of gold triangular nanoprisms by a gold reflective underlayer for chemical sensing. Sens. Actuators B 2016, 228, 31–35. [Google Scholar] [CrossRef]
- Barbillon, G.; Noblet, T.; Busson, B.; Tadjeddine, A.; Humbert, C. Localised detection of thiophenol with gold nanotriangles highly structured as honeycombs by nonlinear sum frequency generation spectroscopy. J. Mater. Sci. 2018, 53, 4554–4562. [Google Scholar] [CrossRef]
- Ding, T.; Sigle, D.O.; Herrmann, L.O.; Wolverson, D.; Baumberg, J.J. Nanoimprint lithography of Al Nanovoids for Deep-UV SERS. ACS Appl. Mater. Interfaces 2014, 6, 17358–17363. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Halas, N.J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961. [Google Scholar] [CrossRef]
- Durach, M.; Rusina, A.; Stockman, M.I.; Nelson, K. Toward full spatiotemporal control on the nanoscale. Nano Lett. 2007, 7, 3145–3149. [Google Scholar] [CrossRef]
- Hao, F.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A.; Halas, N.J.; Nordlander, P. Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008, 8, 3983–3988. [Google Scholar] [CrossRef]
- Liu, N.; Hentschel, M.; Weiss, T.; Alivisatos, A.P.; Giessen, H. Three-dimensional plasmon rulers. Science 2011, 332, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Kondratov, A.V.; Gorkunov, M.V.; Darinskii, A.N.; Gainutdinov, R.V.; Rogov, O.Y.; Ezhov, A.A.; Artemov, V.V. Extreme optical chirality of plasmonic nanohole arrays due to chiral Fano resonance. Phys. Rev. B 2016, 93, 195418. [Google Scholar] [CrossRef]
- Dietrich, K.; Menzel, C.; Lehr, D.; Puffky, O.; Hübner, U.; Pertsch, T.; Tünnermann, A.; Kley, E.-B. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial. Appl. Phys. Lett. 2014, 104, 193107. [Google Scholar] [CrossRef]
- Camacho-Morales, R.; Rahmani, M.; Kruk, S.; Wang, L.; Xu, L.; Smirnova, D.A.; Solntsev, A.S.; Miroshnichenko, A.; Tan, H.H.; Karouta, F.; et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett. 2016, 16, 7191–7197. [Google Scholar] [CrossRef]
- Hao, F.; Nordlander, P.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652. [Google Scholar] [CrossRef]
- Davoyan, A.R.; Shadrivov, I.V.; Kivshar, Y.S. Nonlinear plasmonic slot waveguides. Opt. Express 2008, 16, 21209–21214. [Google Scholar] [CrossRef]
- Salgueiro, J.R.; Kivshar, Y.S. Nonlinear plasmonic directional couplers. Appl. Phys. Lett. 2010, 97, 081106. [Google Scholar] [CrossRef]
- Kravtsov, V.; Ulbricht, R.; Atkin, J.M.; Raschke, M.B. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol. 2016, 11, 459–464. [Google Scholar] [CrossRef]
- Nesterov, M.L.; Yin, X.; Schäferling, M.; Giessen, H.; Weiss, T. The role of Plasmon-Generated Near Fields for Enhanced Circular Dichroism Spectroscopy. ACS Photonics 2016, 3, 578–583. [Google Scholar] [CrossRef]
- Jia, W.; Ren, P.; Jia, Y.; Fan, C. Active Control and Large Group Delay in Graphene-Based Terahertz Metamaterials. J. Phys. Chem. C 2019, 123, 18560–18564. [Google Scholar] [CrossRef]
- Frese, D.; Wei, Q.; Wang, Y.; Huang, L.; Zentgraf, T. Nonreciprocal Asymmetric Polarization Encryption by Layered Plasmonic Metasurfaces. Nano Lett. 2019, 19, 3976–3980. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Todisco, F.; Bakhti, S.; Passaseo, A.; Tarantini, I.; Cuscuna, M.; Destouches, N.; Tasco, V. Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances. Nano Lett. 2019, 19, 1922–1930. [Google Scholar] [CrossRef] [PubMed]
- Pourjamal, S.; Hakala, T.K.; Necada, M.; Freire-Fernandez, F.; Kataja, M.; Rekola, H.; Martikainen, J.; Törmä, P.; van Dijken, S. Lasing in Ni Nanodisk Arrays. ACS Nano 2019, 13, 5686–5692. [Google Scholar] [CrossRef]
- Knudson, M.P.; Li, R.; Wang, D.; Wang, W.; Schaller, R.D.; Odom, T.W. Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays. ACS Nano 2019, 13, 7435–7441. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, D.; Hu, J.; Liu, J.; Wang, W.; Guan, J.; Schaller, R.D.; Odom, T.W. Engineering Symmetry- Breaking Nanocrescent Arrays for Nanolasing. Adv. Funct. Mater. 2019, 29, 1904157. [Google Scholar] [CrossRef]
- Sarkar, A.; Shivakiran Bhaktha, B.N.; Andreasen, J. Replica Symmetry Breaking in a Weakly Scattering Optofluidic Random Laser. Sci. Rep. 2020, 10, 2628. [Google Scholar] [CrossRef]
- Shah, Y.D.; Grant, J.; Hao, D.; Kenney, M.; Pusino, V.; Cumming, D.R.S. Ultra-narrow Line Width Polarization-Insensitive Filter Using a Symmetry-Breaking Selective Plasmonic Metasurface. ACS Photonics 2018, 5, 663–669. [Google Scholar] [CrossRef]
- Vaianella, F.; Hamm, J.M.; Hess, O.; Maes, B. Strong Coupling and Exceptional Points in Optically Pumped Active Hyperbolic Metamaterials. ACS Photonics 2018, 5, 2486–2495. [Google Scholar] [CrossRef]
- Akbari, M.; Gao, J.; Yang, X. Manipulating transverse photovoltage across plasmonic triangle holes of symmetry breaking. Appl. Phys. Lett. 2019, 114, 171102. [Google Scholar] [CrossRef]
- Lourenço-Martins, H.; Das, P.; Tizei, L.H.G.; Weil, R.; Kociak, M. Self-hybridization within non-Hermitian localized plasmonic systems. Nat. Phys. 2018, 14, 360–364. [Google Scholar] [CrossRef]
- Mahdy, M.R.C.; Danesh, M.; Zhang, T.; Ding, W.; Rivy, H.M.; Chowdhury, A.B.; Mehmood, M.Q. Plasmonic Spherical Heterodimers: Reversal of Optical Binding Force Based on the Forced Breaking of Symmetry. Sci. Rep. 2018, 8, 3164. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Paria, D.; Wang, H.; Li, M.; Barman, I. Optical properties of symmetry-breaking tetrahedral nanoparticles. Nanoscale 2020, 12, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Shorokhov, A.S.; Hopkins, B.; Miroshnichenko, A.E.; Shcherbakov, M.R.; Camacho-Morales, R.; Fedyanin, A.A.; Neshev, D.N.; Kivshar, Y.S. Nonlinear Symmetry Breaking in Symmetric Oligomers. ACS Photonics 2017, 4, 454–461. [Google Scholar] [CrossRef]
- Gennaro, S.D.; Li, Y.; Maier, S.A.; Oulton, R.F. Nonlinear Pancharatnam–Berry Phase Metasurfaces beyond the Dipole Approximation. ACS Photonics 2019, 6, 2335–2341. [Google Scholar] [CrossRef]
- Taghinejad, M.; Xu, Z.; Lee, K.-T.; Lian, T.; Cai, W. Transient Second-Order Nonlinear Media: Breaking the Spatial Symmetry in the Time Domain via Hot-Electron Transfer. Phys. Rev. Lett. 2020, 124, 013901. [Google Scholar] [CrossRef]
- Shi, J.; Liang, W.-Y.; Raja, S.; Sang, Y.; Zhang, X.-Q.; Chen, C.-A.; Wang, Y.; Yang, X.; Lee, Y.-H.; Ahn, H.; et al. Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide. Laser Photonics Rev. 2018, 12, 1800188. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Chung, T.L.; Hsiao, H.-H.; Chen, J.-W.; Lin, R.J.; Wu, P.C.; Sun, G.; Wang, C.-M.; Misawa, H.; Tsai, D.P. Second Harmonic Light Manipulation with Vertical Split Ring Resonators. Adv. Mater. 2019, 31, 1806479. [Google Scholar] [CrossRef]
- Dalstein, L.; Humbert, C.; Ben Haddada, M.; Boujday, S.; Barbillon, G.; Busson, B. The Prevailing Role of Hotspots in Plasmon-Enhanced Sum-Frequency Generation Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 7706–7711. [Google Scholar] [CrossRef]
- Greybush, N.J.; Pacheco-Pena, V.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmonic Optical and Chiroptical Response of Self-Assembled Au Nanorod Equilateral Trimers. ACS Nano 2019, 13, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Gao, J.; Yang, X. Chiral Metamaterials of Plasmonic Slanted Nanoapertures with Symmetry Breaking. Nano Lett. 2018, 18, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.; Jiang, Q.; Zhao, A.; Bellessa, J.; Genet, C.; Drezet, A. Manifestation of Planar and Bulk Chirality Mixture in Plasmonic Λ-Shaped Nanostructures Caused by Symmetry Breaking Defects. ACS Photonics 2017, 4, 2453–2460. [Google Scholar] [CrossRef]
- Rajaei, M.; Zeng, J.; Albooyeh, M.; Kamandi, M.; Hanifeh, M.; Capolino, F.; Wickramasinghe, H.K. Giant Circular Dichroism at Visible Frequencies Enabled by Plasmonic Ramp-Shaped Nanostructures. ACS Photonics 2019, 6, 924–931. [Google Scholar] [CrossRef]
- Goerlitzer, E.S.A.; Mohammadi, R.; Nechayev, S.; Banzer, P.; Vogel, N. Large-Area 3D Plasmonic Crescents with Tunable Chirality. Adv. Optical Mater. 2019, 7, 1801770. [Google Scholar] [CrossRef]
- Leahu, G.; Petronijevic, E.; Belardini, A.; Centini, M.; Sibilia, C.; Hakkarainen, T.; Koivusalo, E.; Piton, M.R.; Suomalainen, S.; Guina, M. Evidence of Optical Circular Dichroism in GaAs-Based Nanowires Partially Covered with Gold. Adv. Opt. Mater. 2017, 5, 1601063. [Google Scholar] [CrossRef]
- Özge Topal, Ç.; Jaradat, H.M.; Karumuri, S.; O’Hara, J.F.; Akyurtlu, A.; Kaan Kalkan, A. Plasmon Resonances in Nanohemisphere Monolayers. J. Phys. Chem. C 2017, 121, 23599–23608. [Google Scholar] [CrossRef]
- Smith, K.W.; Yang, J.; Hernandez, T.; Swearer, D.F.; Scarabelli, L.; Zhang, H.; Zhao, H.; Moringo, N.A.; Chang, W.-S.; Liz-Marzan, L.M.; et al. Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. J. Phys. Chem. C 2018, 122, 13259–13266. [Google Scholar] [CrossRef]
- Jones, M.R.; Kohlstedt, K.L.; O’Brien, M.N.; Wu, J.; Schatz, G.C.; Mirkin, C.A. Deterministic Symmetry Breaking of Plasmonic Nanostructures Enabled by DNA-Programmable Assembly. Nano Lett. 2017, 17, 5830–5835. [Google Scholar] [CrossRef]
- Zhang, Y.; Nelson, T.; Tretiak, S.; Guo, H.; Schatz, G.C. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions. ACS Nano 2018, 12, 8415–8422. [Google Scholar] [CrossRef]
- Misbah, I.; Zhao, F.; Shih, W.-C. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold–Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 2273–2281. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, H.; Yang, M.; Pang, S.W. Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor. Nanoscale 2018, 10, 19927–19936. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zeisberger, M.; Huebner, U.; Giannini, V.; Schmidt, M.A. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers. Sci. Rep. 2019, 9, 2873. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ndao, A.; Cai, W.; Hsu, L.; Kodigala, A.; Lepetit, T.; Lo, Y.; Kanté, B. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys. 2020, 16, 462–468. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, T.; Wang, R.; Zhang, X. Surface-Enhanced Circular Dichroism of Oriented Chiral Molecules by Plasmonic Nanostructures. J. Phys. Chem. C 2017, 121, 666–675. [Google Scholar] [CrossRef]
- Garcia-Guirado, J.; Svedendahl, M.; Puigdollers, J.; Quidant, R. Enantiomer-Selective Molecular Sensing Using Racemic Nanoplasmonic Arrays. Nano Lett. 2018, 18, 6279–6285. [Google Scholar] [CrossRef]
Refs. | Improved Performances | Applications |
---|---|---|
[64] | Plasmon-induced transparency effect | Biosensing and spectral filters in the terahertz regime |
[65] | Amplitude control of transmitted light | Security features for anticounterfeiting |
[66] | Scattering directions | Polarization-dependent security patterns |
[67] | Tunability of the multimode laser effect | Loss-compensated magnetoplasmonic devices |
[68] | Polarization-dependent lasing responses | Optical sensing and communications |
[69] | Optical feedback for nanolasing | Super-resolved imaging and on-chip circuitry |
[70] | Laser effect with weak scattering | Optofluidic random laser |
[71] | High transmission efficiency | Photodiodes and single-photon avalanche diodes |
[72] | Generation of exceptional points | Active components with HMMs and EP |
[73] | Transverse photo-induced voltage | Photodetection and chiral sensing |
[74] | Non-Hermicity-induced strong coupling | Localized surface plasmon systems |
[75] | Reversal of optical binding force | Sensors and particle clustering/aggregation |
[76] | Optical spectral features | Ultrasensitive biosensing and efficient photocatalysis |
Refs. | Improved Performances | Applications |
---|---|---|
[77] | Polarization-dependent SHG signals | Detection of the symmetry of nanostructures/molecules |
[78] | SHG and FWM non-linear processes | Identification of the role of high-order antenna modes |
[79] | Second-order non-linear susceptibilities | Creation and active tuning of second-order non-linearities |
[80] | Plasmon-enhanced SHG of TDMCs | Ideal integration platform for on-chip non-linear plasmonics |
[81] | SHG of vertical SRRs | Photonics and sensing |
[82] | SFG signals | Spectroscopic analysis and sensing of molecules |
Refs. | Improved Performances | Applications |
---|---|---|
[83] | Hybridized plasmon modes | Optical magnetic field enhancement |
[84] | Circular dichroism in transmission | Chiral imaging, sensing, and spectroscopy |
[85] | 3D chiral effects | Study of complex plasmonic nanostructures |
[86] | Circular dichroism | Nanoscale circular polarizers |
[87] | Tailoring of circular dichroism | Chiral sensing and circular dichroism spectroscopy |
[88] | Circular dichroism | Chiral sensing devices |
Refs. | Improved Performances | Applications |
---|---|---|
[89] | Plasmonic resonances | Surface-enhanced Raman scattering sensing |
[90] | Splitting of plasmon modes | Sensing |
[91] | Optical properties of 1D plasmonic nanostructures | Solution-phase metamaterials |
[92] | Dynamic process of H dissociation on metallic NP | Tunable photochemistry |
[93] | Splitting of plasmon modes for alloy nanodisc arrays | Biosensing technologies |
[94] | Detection sensitivity | Modern biosensors |
[95] | Magnetic Fano resonances | Bioanalytics via high precision sensing |
[96] | Detection sensitivity with plasmonic EPs | Nanoscale devices and sensors |
[97] | Circular dichroism | Detection of chiral molecules |
[98] | Circular dichroism | Chiral sensors |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbillon, G.; Ivanov, A.; Sarychev, A.K. Applications of Symmetry Breaking in Plasmonics. Symmetry 2020, 12, 896. https://doi.org/10.3390/sym12060896
Barbillon G, Ivanov A, Sarychev AK. Applications of Symmetry Breaking in Plasmonics. Symmetry. 2020; 12(6):896. https://doi.org/10.3390/sym12060896
Chicago/Turabian StyleBarbillon, Grégory, Andrey Ivanov, and Andrey K. Sarychev. 2020. "Applications of Symmetry Breaking in Plasmonics" Symmetry 12, no. 6: 896. https://doi.org/10.3390/sym12060896
APA StyleBarbillon, G., Ivanov, A., & Sarychev, A. K. (2020). Applications of Symmetry Breaking in Plasmonics. Symmetry, 12(6), 896. https://doi.org/10.3390/sym12060896