Some Identities on the Poly-Genocchi Polynomials and Numbers
Abstract
:1. Introduction
2. The Poly-Genocchi Polynomials
3. The Unipoly Genocchi Polynomials and Numbers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bayad, A.; Kim, T. Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2010, 20, 247–253. [Google Scholar]
- Bayad, A.; Chikhi, J. Non linear recurrences for Apostol-Bernoulli-Euler numbers of higher order. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 1–6. [Google Scholar]
- Kim, T.; Kim, D.S.; Lee, H.; Kwon, J. Degenerate binomial coefficients and degenerate hypergeometric functions. Adv. Differ. Equ. 2020, 2020, 115. [Google Scholar] [CrossRef]
- Kim, T. Some identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2010, 20, 23–28. [Google Scholar]
- Kim, T.; Kim, D.S. Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RASAM 2020, 114, 1. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate polyexponential functions and degenerate Bell polynomials. J. Math. Anal. Appl. 2020, 487, 124017. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. A note on central Bell numbers and polynomilas. Russ. J. Math. Phys. 2020, 27, 76–81. [Google Scholar]
- Kim, T.; Kim, D.S.; Kim, H.Y.; Jang, L.C. Degenerate poly-Bernoulli numbers and polynomials. Informatica 2020, 31, 1–7. [Google Scholar]
- Kim, D.S.; Kim, T. A note on polyexponential and unipoly functions. Russ. J. Math. Phys. 2019, 26, 40–49. [Google Scholar] [CrossRef]
- Hardy, G.H. On a class a functions. Proc. Lond. Math. Soc. 1905, 3, 441–460. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.K.; Lee, H.S. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials. Adv. Differ. Equ. 2020, 2020, 168. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, J.K.; Kim, H.Y. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials. J. Inequal. Appl. 2020, 2020, 110. [Google Scholar] [CrossRef] [Green Version]
- Zagier, D. The Bloch-Wigner-Ramakrishnan polylogarithm function. Math. Ann. 1990, 286, 613–624. [Google Scholar] [CrossRef]
- Lewin, L. Polylogarithms and Associated Functions; With a foreword by A. J. Van der Poorten; North-Holland Publishing Co.: New York, NY, USA; Amsterdam, The Netherlands, 1981; p. xvii+359. [Google Scholar]
- Jonqui<i>e</i>`re, A. Note sur la serie . Bull. Soc. Math. France 1889, 17, 142–152. [Google Scholar]
- Kaneko, M. Poly-Bernoulli numbers. J. Theor. Nombres Bordeaux 1997, 9, 221–228. [Google Scholar] [CrossRef]
- Dolgy, D.V.; Kim, T.; Kwon, H.-I.; Seo, J.J. Symmetric identities of degenerate q-Bernoulli polynomials under symmetric group S3. Proc. Jangjeon Math. Soc. 2016, 19, 1–9. [Google Scholar]
- Gaboury, S.; Tremblay, R.; Fugere, B.-J. Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 2014, 17, 115–123. [Google Scholar]
- Cangul, I.N.; Kurt, V.; Ozden, H.; Simsek, Y. On the higher-order w − q-Genocchi numbers. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 19, 39–57. [Google Scholar]
- Duran, U.; Acikgoz, M.; Araci, S. Symmetric identities involving weighted q-Genocchi polynomials under S4. Proc. Jangjeon Math. Soc. 2015, 18, 445–465. [Google Scholar]
- Jang, L.C.; Ryoo, C.S.; Lee, J.G.; Kwon, H.I. On the k-th degeneration of the Genocchi polynomials. J. Comput. Anal. Appl. 2017, 22, 1343–1349. [Google Scholar]
- Jang, L.C. A study on the distribution of twisted q-Genocchi polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2009, 18, 181–189. [Google Scholar]
- Kim, D.S.; Kim, T. A note on a new type of degenerate Bernoulli numbers. Russ. J. Math. Phys. 2020, 27, 227–235. [Google Scholar] [CrossRef]
- Kurt, B.; Simsek, Y. On the Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2013, 23, 13–17. [Google Scholar]
- Kwon, J.; Kim, T.; Kim, D.S.; Kim, H.Y. Some identities for degenerate complete and inomplete r-Bell polynomials. J. Inequal. Appl. 2020, 23. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. The Umbral Calculus, Pure and Applied Mathematics, 111; Academic Press, Inc.: Harcourt Brace Jovanovich: New York, NY, USA, 1984; p. x+193. [Google Scholar]
- Jang, L.-C.; Kim, D.S.; Kim, T.; Lee, H. p-Adic integral on associated with degenerate Bernoulli polynomials of the second kind. Adv. Differ. Equ. 2020, 2020, 278. [Google Scholar] [CrossRef]
- kim, T.; Kim, D.S.; Jang, L.-C.; Lee, H. Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers. Adv. Differ. Equ. 2020, 2020, 245. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Some relations of two type 2 polynomials and discrete harmonic numbers and polynomials. Symmetry 2020, 12, 905. [Google Scholar] [CrossRef]
- Kwon, J.; Jang, L.-C. A note on the type 2 poly-Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2020, 30, 253–262. [Google Scholar]
- Kim, D.S.; Kim, T.; Kwon, J.; Lee, H. A note on λ-Bernoulli numbers of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 2020, 30, 187–195. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgy, D.V.; Jang, L.-C. Some Identities on the Poly-Genocchi Polynomials and Numbers. Symmetry 2020, 12, 1007. https://doi.org/10.3390/sym12061007
Dolgy DV, Jang L-C. Some Identities on the Poly-Genocchi Polynomials and Numbers. Symmetry. 2020; 12(6):1007. https://doi.org/10.3390/sym12061007
Chicago/Turabian StyleDolgy, Dmitry V., and Lee-Chae Jang. 2020. "Some Identities on the Poly-Genocchi Polynomials and Numbers" Symmetry 12, no. 6: 1007. https://doi.org/10.3390/sym12061007