Synergies of Text Mining and Multiple Attribute Decision Making: A Criteria Selection and Weighting System in a Prospective MADM Outline
Abstract
:1. Definition of the Current Study in the MADM Outline
- Category 1:
- Category 2:
- Category 3:
- Category 4:
- Category 5:
2. Definition of the Current Study in the Prospective MADM Outline
- Limiters/Boosters:
- Multi-Aspect Criterion
- Supportive-backup criteria
- Sensitivity analysis of the experts based on Causal Layered Analysis (CLA)
3. Research Gap and Case Study: “Machine Tool Selection”
4. Method
4.1. Data Collection
4.2. Data Analysis
4.2.1. Pre-Processing and Term Reduction
4.2.2. Term Frequency Matrix Transformation
4.2.3. Singular Value Decomposition (SVD)
4.2.4. Factor Determination
4.2.5. Term Loadings and Cross-Loadings
5. Results
5.1. Factor Interpretation and Labels
5.2. Confluence of PMADM and Text mining
6. Final Proposed Weighting Structure
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Tokens | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 |
---|---|---|---|---|---|
accuraci | −0.07544 | −0.02045 | −0.11645 | −0.02227 | 0.019636 |
adapt | 0.05399 | −0.04528 | 0.003571 | −0.14157 | 0.199365 |
administr | −0.02739 | −0.04876 | −0.00882 | 0.016549 | −0.00983 |
altern | 0.035358 | −0.07187 | −0.01185 | −0.20609 | 0.014524 |
axi | −0.02261 | 0.00917 | −0.16617 | 0.035082 | 0.095056 |
calibr | 0.010538 | −0.18789 | 0.004858 | −0.04542 | −0.03483 |
capabl | 0.017671 | 0.005341 | 0.001862 | −0.10701 | 0.049956 |
capit | −0.01365 | −0.3049 | 0.01159 | 0.03833 | −0.03655 |
choos | −0.03783 | −0.00694 | 0.0011 | −0.02371 | 0.018954 |
cnc | −0.01822 | 0.023044 | −0.0021 | 0.026414 | 0.271168 |
collector | −0.00613 | 0.009799 | 0.005666 | 0.008668 | 0.123106 |
compani | −0.1016 | 0.002902 | −0.01972 | −0.10697 | 0.004729 |
compat | −0.21839 | 0.073125 | 0.010751 | −0.07765 | 0.003632 |
conform | 0.021347 | −0.23393 | 0.00796 | 0.026274 | −0.0212 |
consumpt | −0.13604 | 0.087801 | −0.09374 | −0.24513 | −0.09154 |
cost | −0.17724 | −0.29611 | −0.0384 | −0.14504 | −0.05739 |
creat | −0.03566 | −0.01711 | −0.0005 | −0.01023 | −0.01453 |
custom | −0.02544 | 0.009187 | 0.014583 | −0.02641 | 0.061236 |
deform | 0.008177 | 0.017282 | 0.014448 | 0.005093 | 0.189623 |
depreci | 0.019106 | −0.30184 | 0.00804 | 0.035376 | −0.02536 |
desir | −0.06595 | 0.008115 | −0.00911 | 0.02126 | 0.063925 |
diamet | 0.099029 | −0.0026 | −0.16178 | −0.15385 | 0.015298 |
divers | 0.022183 | −0.00125 | 0.001156 | −0.10511 | −0.00081 |
door | 0.00085 | 0.000514 | −0.00049 | 0.015471 | 0.080006 |
drive | 0.011075 | 0.02959 | 0.021017 | −0.04859 | 0.187868 |
durabl | −0.09892 | 0.016209 | 0.009514 | −0.12024 | −0.05007 |
eas | −0.10411 | 0.000595 | 0.013019 | −0.03576 | 0.01473 |
economi | 0.097927 | −0.03463 | −0.00437 | −0.18764 | 0.026237 |
energi | −0.09209 | 0.071298 | −0.00312 | −0.22761 | −0.07012 |
environ | −0.04275 | 0.0179 | 0.011725 | −0.0469 | 0.160445 |
environment | −0.0535 | 0.029703 | −0.00172 | −0.19527 | −0.03063 |
etc | 0.15136 | −0.04217 | −0.03988 | 0.052489 | 0.471026 |
extinguish | 0.001812 | 0.010433 | 0.004893 | 0.017118 | 0.156383 |
failur | −0.0148 | 0.011944 | 0.011471 | −0.00073 | 0.178497 |
fig | −0.12019 | −0.06003 | −0.00246 | 0.062841 | −0.01877 |
fire | 0.001812 | 0.010433 | 0.004893 | 0.017118 | 0.156383 |
fixtur | −0.10158 | −0.0179 | −0.03705 | −0.01674 | −0.02785 |
gener | 0.01332 | −0.00645 | −0.01385 | 0.004389 | 0.047838 |
imag | −0.05945 | 0.026555 | 0.004708 | −0.08376 | −0.0285 |
instal | −0.19012 | 0.04396 | 0.022779 | −0.09798 | 0.042728 |
integr | −0.02544 | 0.009187 | 0.014583 | −0.02641 | 0.061236 |
intend | −0.05033 | 0.005145 | −0.005 | 0.012282 | 0.037751 |
inventori | −0.05286 | −0.06489 | −0.00272 | 0.014498 | 0.012564 |
invest | −0.11431 | −0.03194 | 0.008617 | −0.04711 | −0.04063 |
kw | 0.024839 | −0.00395 | −0.16872 | 0.025859 | −0.02441 |
labor | −0.11883 | −0.08484 | 0.013301 | 0.047077 | −0.00877 |
length | 0.016347 | −0.00252 | −0.15699 | −0.03902 | −0.0261 |
load | 0.055425 | −0.00905 | 0.001524 | −0.12312 | 0.071062 |
lot | −0.06024 | −0.06781 | −0.00899 | 0.02154 | 0.001898 |
machin | −0.34665 | −0.15065 | −0.02262 | 0.033575 | 0.191764 |
manufactur | 0.003534 | −0.33313 | −0.00022 | 0.013707 | −0.00348 |
market | −0.06512 | −0.03902 | 0.01068 | −0.01209 | −0.01693 |
max | 0.053809 | −0.01321 | −0.15942 | 0.0453 | 0.078574 |
mcdm | −0.00424 | 0.011741 | −0.00546 | −0.10385 | −0.01076 |
mist | −0.00613 | 0.009799 | 0.005666 | 0.008668 | 0.123106 |
mm | 0.081566 | −0.00395 | −0.81775 | 0.097339 | −0.14824 |
multi | −0.05101 | 0.040368 | −0.00491 | −0.14251 | −0.04423 |
oper | −0.18888 | −0.10804 | 0.003421 | −0.02289 | 0.032413 |
pallet | −0.09463 | −0.02823 | −0.00904 | 0.036023 | 0.065802 |
paramet | 0.001408 | −0.02892 | 0.009004 | −0.11643 | 0.017664 |
physic | −0.03349 | −0.00185 | −0.03829 | 0.006777 | 0.030456 |
power | 0.004777 | 0.032131 | −0.13564 | −0.05492 | 0.110604 |
previou | −0.04542 | 0.011221 | 0.002405 | −0.07085 | 0.003702 |
price | −0.01604 | 0.052631 | −0.12576 | −0.20072 | −0.04932 |
product | −0.17811 | −0.13235 | 0.014905 | −0.10792 | 0.050977 |
properti | 0.003185 | −0.02044 | 0.01204 | −0.08363 | 0.0051 |
purchas | −0.05033 | 0.005145 | −0.005 | 0.012282 | 0.037751 |
recycl | −0.02378 | 0.026506 | 0.011101 | −0.06907 | 0.051117 |
rel | −0.01033 | 0.035153 | 0.015351 | −0.13575 | 0.016411 |
rework | 0.011429 | −0.33022 | 0.007266 | 0.040113 | −0.02494 |
rock | 0.463096 | −0.23186 | −0.03155 | −0.44445 | 0.130465 |
rotari | −0.00274 | 0.013883 | −0.00411 | 0.023967 | 0.211357 |
safe | −0.05033 | 0.005145 | −0.005 | 0.012282 | 0.037751 |
scrap | 0.011429 | −0.33022 | 0.007266 | 0.040113 | −0.02494 |
secondari | 0.022183 | −0.00125 | 0.001156 | −0.10511 | −0.00081 |
secur | −0.05206 | 0.000298 | 0.00651 | −0.01788 | 0.007365 |
servic | −0.20497 | 0.060389 | −0.05111 | −0.07789 | 0.149842 |
setup | −0.13246 | −0.04561 | 0.022969 | −0.15475 | −0.05275 |
shape | −0.05785 | 0.017883 | −0.03902 | −0.03418 | −0.01467 |
shift | −0.13133 | −0.06672 | 0.01663 | 0.050026 | −0.01085 |
space | −0.04351 | 0.027589 | −0.04554 | −0.05652 | 0.15348 |
spindl | 0.0295 | 0.0045 | −0.1682 | 0.0547 | 0.1890 |
standard | −0.06674 | −0.01489 | −0.11931 | 0.00499 | −0.04856 |
stroke | −0.02433 | 0.014644 | −0.14311 | −0.01087 | −0.03614 |
sub | 0.007558 | −0.24063 | 0.014101 | 0.004916 | −0.02523 |
suppli | −0.02739 | −0.04876 | −0.00882 | 0.016549 | −0.00983 |
taper | 0.014388 | 0.005333 | −0.00691 | 0.024307 | 0.171176 |
technic | −0.1124 | 0.030998 | 0.010576 | −0.22095 | −0.05604 |
technolog | −0.03303 | 0.013566 | 0.01132 | −0.08502 | −0.01854 |
thermal | −0.02329 | 0.012514 | 0.007474 | 0.005213 | 0.175115 |
tool | −0.26426 | −0.04665 | −0.23164 | 0.032951 | 0.197688 |
travers | 0.009275 | 0.005969 | −0.00797 | 0.00751 | 0.112826 |
unit | −0.05183 | −0.0385 | 0.004586 | 0.000737 | −0.01226 |
us | −0.10535 | 0.015706 | −0.00151 | 0.005064 | 0.123736 |
user | −0.22003 | 0.049804 | −0.05291 | −0.08046 | −0.03492 |
util | −0.06063 | −0.22188 | −0.0083 | 0.029607 | −0.00313 |
variou | −0.04542 | 0.011221 | 0.002405 | −0.07085 | 0.003702 |
volum | −0.00642 | 0.025635 | 0.008904 | −0.13559 | 0.009527 |
warranti | −0.04616 | 0.027072 | −0.00139 | −0.07093 | −0.02382 |
wast | −0.04027 | 0.042821 | 0.005618 | −0.20761 | −0.04861 |
weight | 0.063673 | 0.014336 | −0.04865 | −0.22286 | 0.035649 |
References
- Ho, W.; Xu, X.; Dey, P.K. Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. Eur. J. Oper. Res. 2010, 202, 16–24. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Econ. Comput. Econ. Cybern. Stud. Res. 2016, 50, 25–44. [Google Scholar]
- Zavadskas, E.K.; Turskis, Z. Multiple criteria decision making (MCDM) methods in economics: An overview. Technol. Econ. Dev. Econ. 2011, 17, 397–427. [Google Scholar] [CrossRef] [Green Version]
- Kabir, G.; Sadiq, R.; Tesfamariam, S. A Review of Multi-criteria Decision-making Methods for Infrastructure Management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [Google Scholar] [CrossRef]
- Jahan, A.; Edwards, K.L. VIKOR method for material selection problems with interval numbers and target-based criteria. Mater. Des. 2013, 47, 759–765. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Kildiene, S. State of art surveys of overviews on MCDM/MADM methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.A.; Ho, W.; Dey, P.K. A review of multi-criteria decision-making methods for bioenergy systems. Energy 2012, 42, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shi, X.; Sun, J.; Qian, W. A grey interval relational degree-based dynamic multi-attribute decision making method and its application in investment decision making. Math. Probl. Eng. 2014. [Google Scholar] [CrossRef] [Green Version]
- Aguezzoul, A. Third-party logistics selection problem: A literature review on criteria and methods. Omega 2014, 49, 69–87. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications – two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Khalifah, Z.; Jusoh, A.; Nor, K.M.D. Multiple criteria decision-making techniques in transportation systems: A systematic review of the state of the art literature. Transport 2016, 31, 359–385. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Mardani, A.; Turskis, Z.; Jusoh, A.; Nor, K.M.D. Development of TOPSIS Method to Solve Complicated Decision-Making Problems—An Overview on Developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 645–682. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision making in Complex. Environments, the Analytical Hierarchy Process. for decision Making with Dependence and Dependence and Feedback; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Saaty, T.L. Fundamentals of analytic network process. In Proceedings of the The International Symposium on the Analytic Hierarchy Process, Cobe, Japan, 12–14 August 1999; pp. 348–379. [Google Scholar]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Yazdani, M.; Zavadskas, E.K. An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Comput. 2018, 22, 7399–7405. [Google Scholar] [CrossRef]
- Ginevicius, R. A New Determining Method for the Criteria Weights in Multi-Criteria Evaluation. Int. J. Inf. Technol. Decis. Mak. 2011, 10, 1067–1095. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Z.; Sremac, S. A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z.; Vilutiene, T. Multiple criteria analysis of foundation instalment alternatives by applying additive ratio assessment (ARAS) method. Arch. Civil. Mech. Eng. 2010, 10, 123–141. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J.; Zakarevicius, A. Optimization of weighted aggregated sum product assessment. Electron. Electr. Eng. 2012, 6, 3–6. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, R.; Turskis, Z. Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS). INFORMATICA 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Stević, Z.; Pamucar, D.; Puska, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS). Comput. Ind. Eng. 2020, 120, 106231. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Bahrani, M. Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technol. Econ. Dev. Econ. 2014, 20, 534–553. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Aghdaie, M.H.; Derakhti, A.; Zavadskas, E.K.; Morshed Varzandeh, M.H. Decision making on business issues with foresight perspective; An application of new hybrid MCDM model in shopping mall locating. Expert Syst. Appl. 2013, 40, 7111–7121. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Esfahani, M.H.; Bitarafan, M.; Zavadskas, E.K.; Lale Arefi, S. Developing a new hybrid MCDM method for selection of the optimal alternative of mechanical longitudinal ventilation of tunnel pollutants during automobile accidents. Transport 2013, 28, 89–96. [Google Scholar] [CrossRef]
- Chini, M.; Lale Arefi, S.; Hashemkhani Zolfani, S.; Ustinovicius, L. Choosing a proper method for strengthening WPC beams with grooving method using SWARA-EDAS. Arch. Civ. Eng. 2018, 64, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Hashemkhani Zolfani, S.; Mosharafiandehkordi, S.; Kutut, V. A pre-planning for hotel locating according to the sustainability perspective based on BWM-WASPAS approach. Int. J. Strateg. Prop. Manag. 2019, 23, 405–419. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Ecer, F.; Pamucar, D.; Raslanas, S. Neighborhood selection for a newcomer via a novel BWM-based revised MAIRCA integrated model: A case from the Coquimbo-La Serena conurbation, Chile. Int. J. Strateg. Prop. Manag. 2020, 24, 102–118. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A Comparative Analysis of the Rank Reversal Phenomenon in the EDAS and TOPSIS Methods. Econ. Comput. Econ. Cybern. Stud. Res. 2018, 52, 121–134. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Chatterjee, P. Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials. Symmetry 2019, 11, 74. [Google Scholar] [CrossRef] [Green Version]
- Deveci, M.; Canitez, F.; Gokasar, I. WASPAS and TOPSIS based interval type-2 fuzzy MCDM method for a selection of a car sharing station. Sustain. Cities Soc. 2018, 41, 777–791. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Comprehensive assessment for battery energy storage systems based on fuzzy-MCDM considering risk preferences. Energy 2019, 168, 450–461. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations. Arch. Civ. Mech. Eng. 2018, 18, 32–49. [Google Scholar] [CrossRef]
- Dincer, H.; Yuksel, S. An integrated stochastic fuzzy MCDM approach to the balanced scorecard-based service evaluation. Math. Comput. Simul. 2019, 166, 93–112. [Google Scholar] [CrossRef]
- Boral, S.; Howard, I.; Chaturvedi, S.K.; McKee, K.; Naikan, V.N.A. An integrated approach for fuzzy failure modes and effects analysis using fuzzy AHP and fuzzy MAIRCA. Eng. Fail. Anal. 2020, 108, 104195. [Google Scholar] [CrossRef]
- Roozbahani, A.; Ghased, H.; Hashemi Shahedany, M. Inter-basin water transfer planning with grey COPRAS and fuzzy COPRAS techniques: A case study in Iranian Central Plateau. Sci. Total Environ. 2020, 138499. [Google Scholar] [CrossRef]
- Pamučar, D.; Deveci, M.; Canitez, F.; Bozanic, D. A fuzzy Full Consistency Method-Dombi-Bonferroni model for prioritizing transportation demand management measures. Appl. Soft Comput. 2020, 87, 105952. [Google Scholar] [CrossRef]
- Rahimi, S.; Hafezalkotob, A.; Monavari, S.M.; Hafezalkotob, A.; Rahimi, R. Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. J. Clean. Prod. 2020, 248, 119186. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Maknoon, R.; Zavadskas, E.K. An introduction to Prospective Multiple Attributes Decision Making (PMADM). Technol. Econ. Dev. Econ. 2016, 22, 309–326. [Google Scholar] [CrossRef]
- Ozernoy, V.M. Multiple criteria decision making in the USSR: A survey. Nav. Res. Logist. 1988, 35, 543–566. [Google Scholar] [CrossRef]
- Leong, T.Y. Multiple perspective dynamic decision making. Artif. Intell. 1998, 105, 209–261. [Google Scholar] [CrossRef] [Green Version]
- Salo, A.; Gustafsson, T.; Ramanathan, R. Multi-criteria methods for technology foresight. J. Forecast. 2003, 22, 235–255. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R. Dynamic intuitionistic fuzzy multi-attribute decision making. Int. J. Approx. Reason. 2008, 48, 246–262. [Google Scholar] [CrossRef] [Green Version]
- Campanella, G.; Ribeiro, R.A. A framework for dynamic multiple-criteria decision making. Decis. Support Syst. 2011, 52, 52–60. [Google Scholar] [CrossRef]
- Trutnevyte, E.; Stauffacher, M.; Scholz, R.W. Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment. Eur. J. Oper. Res. 2012, 219, 762–772. [Google Scholar] [CrossRef]
- Arms, H.; Wiecher, M.; Kleiderman, V. Dynamic models for managing big decisions. Strategy Leadersh. 2012, 40, 39–46. [Google Scholar] [CrossRef]
- Zhang, Z. An approach to dynamic multi-attribute decision making for choosing green supplier. J. Converg. Inf. Technol. 2012, 7, 261–269. [Google Scholar]
- Tadic, S.R.; Zecevic, S.M.; Krstic, M.D. Ranking of logistics system scenarios for central business district. Promet Traffic Transp. 2014, 26, 159–167. [Google Scholar]
- Gonzalez-Prida, V.; Viveros, P.; Barbera, L.; Crespo Marquez, A. Dynamic analytic hierarchy process: AHP method adapted to a changing environment. J. Manuf. Technol. Manag. 2014, 24, 457–475. [Google Scholar] [CrossRef]
- Ondrus, J.; Bui, T.; Pigneur, Y. A Foresight Support System Using MCDM Methods. Group Decis. Negot. 2014, 24, 333–358. [Google Scholar] [CrossRef] [Green Version]
- Jassbi, J.J.; Ribeiro, R.A.; Varela, L.R. Dynamic MCDM with future knowledge for supplier selection. J. Decis. Syst. 2014, 23, 232–248. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Maknoon, R.; Zavadskas, E.K. Multiple Attribute Decision Making (MADM) based scenarios. Int. J. Strateg. Prop. Management 2016, 20, 101–111. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Dehnavieh, R.; Poursheikhali, A.; Prentkovskis, O.; Khazaelpour, P. Foresight Based on MADM-Based Scenarios’ Approach: A Case about Comprehensive Sustainable Health Financing Models. Symmetry 2020, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Hashemkhani Zolfani, S.; Maknoon, R.; Zavadskas, E.K. MADM and Futures Studies; A necessity. In Proceedings of the 9th International Scientific Conference “Business and Management 2016”, Vilnius Gediminas Technical University Vilnius, Lithuania, 12–13 May 2016; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hashemkhani Zolfani, S.; Zavadskas, E.K.; Khazaelpour, P.; Cavallaro, F. The Multi-Aspect Criterion in the PMADM Outline and Its Possible Application to Sustainability Assessment. Sustainability 2018, 10, 4451. [Google Scholar] [CrossRef] [Green Version]
- Hashemkhani Zolfani, S.; Masaeli, R. From Past to Present and into the Sustainable Future; PMADM Approach in Shaping Regulatory Policies of the Medical Device Industry in the New Sanction Period; Sustainability Modeling in Engineering; A multi-Criteria Perspective; Chatterjee, P., Yazdani, M., Chakraborty, S., Eds.; Word Scientific: Singapore, 2019. [Google Scholar]
- Hashemkhani Zolfani, S.; Yazdani, M.; Zavadskas, E.K.; Hasheminasab, H. Prospective MADM and sensitivity analysis of the experts based on Causal Layered Analysis (CLA). Ekon. a Manag. 2020. In press. [Google Scholar]
- De Miranda Santo, M.; Massari Coelho, G.; Maria dos Santos, D.; Fellos Filho, L. Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technol. Forecast. Soc. Chang. 2006, 73, 1013–1027. [Google Scholar] [CrossRef]
- Saritas, O.; Burmaoglu, S. The evolution of the use of Foresight methods: A scientometric analysis of global FTA research output. Scientometrics 2015, 105, 497–508. [Google Scholar] [CrossRef]
- Jungermann, F.; Information Extraction with RapidMiner. GSCL Symposium Sprachtechnologie Und EHumanities. 2009, p. 1. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.184.1826&rep=rep1&type=pdf#page=59 (accessed on 19 May 2020).
- Hotho, A.; Nürnberger, A.; Paaß, G. A Brief Survey of Text Mining. Gldv J. Comput. Linguist. Lang. Technol. 2005, 20, 19–62. [Google Scholar]
- Delen, D.; Crossland, M.D. Seeding the survey and analysis of research literature with text mining. Expert Syst. Appl. 2008, 34, 1707–1720. [Google Scholar] [CrossRef]
- Sidorova, A.; Evangelopoulos, N.; Valacich, J.S.; Ramakrishnan, T. Uncovering the Intellectual Core of the Information Systems Discipline. Mis Q. 2008, 32, 467–482. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Kamber, M.; Pei, J. Data Mining Techniques, 3rd ed.; Elsevier: New York, NY, USA, 2011. [Google Scholar]
- Li, Y.; Joshi, K.D. The state of social computing research: A literature review and synthesis using the latent semantic analysis approach. In Proceedings of the 18th Americas Conference on Information Systems 2012, Seattle, DC, USA, 9–11 August 2012; Volume 1, pp. 33–40. [Google Scholar]
- Hossain, M.M.; Prybutok, V.; Evangelopoulos, N. Causal Latent Semantic Analysis (cLSA): An Illustration. Int. Bus. Res. 2011, 4, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Li, Y.; Wang, X. Social commerce research: Definition, research themes and the trends. Int. J. Inf. Manag. 2017, 37, 190–201. [Google Scholar] [CrossRef]
- Morley, J. The Academic Phrasebank_ An Academic Writing Resource for Students and Researchers. The University of Manchester: Manchester, UK, 2017. [Google Scholar]
- Kotu, V.; Deshpande, B. Data Science 2nd Edition Concepts and Practice; Elsevier: New York, NY, USA, 2018. [Google Scholar]
- Baker, K. Singular Value Decomposition Tutorial; Working Paper; Ohio State University: Columbus, OH, USA, 2013; pp. 1–24. [Google Scholar]
- Klema, V.; Laub, A. The singular value decomposition: Its computation and some applications. IEEE Trans. Autom. Control 1980, 25, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Aghdai, M.H.; Hashemkhani Zolfani, S.; Zavaskas, E.K. Decision making in machine tool selection: An integrated approach with SWARA nad COPRAS-G method. Inz. Ekon. Eng. Econ. 2014, 24, 5–17. [Google Scholar] [CrossRef]
- Önüt, S.; Kara, S.S.; Efendigil, T. A hybrid fuzzy MCDM approach to machine tool selection. J. Intell. Manuf. 2008, 19, 443–453. [Google Scholar] [CrossRef]
- Samvedi, A.; Jain, V.; Chan, F.T.S. An integrated approach for machine tool selection using fuzzy analytical hierarchy process and grey relational analysis. Int. J. Prod. Res. 2012, 50, 3211–3221. [Google Scholar] [CrossRef]
- Hai, L.; Wang, W.; Fan, L.; Li, Q.; Chen, X. A novel hybrid MCDM model for machine tool selection using fuzzy DEMATEL, entropy weighting and later defuzzification VIKOR. Appl. Soft Comput. J. 2020, 91, 106207. [Google Scholar] [CrossRef]
- Yurdakul, M. AHP as a strategic decision-making tool to justify machine tool selection. J. Mater. Process. Technol. 2004, 146, 365–376. [Google Scholar] [CrossRef]
- Myint, S.; Tabucanon, M.T. A multiple-criteria approach to machine selection for flexible manufacturing systems. Int. J. Prod. Econ. 1994, 33, 121–131. [Google Scholar] [CrossRef]
- Matijević, M.; Mrvac, N.; Mikota, M. The effect of expansion and simultaneous contrast in modificated figural dotted and groundal dotted illusions. Teh. Vjesn. 2014, 21, 1297–1301. [Google Scholar] [CrossRef]
- Özceylan, E.; Kabak, M.; Dadeviren, M. A fuzzy-based decision making procedure for machine selection problem. J. Intell. Fuzzy Syst. 2016, 30, 1841–1856. [Google Scholar] [CrossRef]
- Arslan, M.Ç. A Decision Support System for Machine Tool Selection. Master’s Thesis, Sabanci University, Istanbul, Turkey, 2002. [Google Scholar]
- Çimren, E.; Çatay, B.; Budak, E. Development of a machine tool selection system using AHP. Int. J. Adv. Manuf. Technol. 2007, 35, 363–376. [Google Scholar] [CrossRef]
- Ayag, Z.; Gürcan Özdemir, R. Evaluating machine tool alternatives through modified TOPSIS and alpha-cut based fuzzy ANP. Int. J. Prod. Econ. 2012, 140, 630–636. [Google Scholar] [CrossRef]
- Kumru, M.; Kumru, P.Y. A fuzzy ANP model for the selection of 3D coordinate-measuring machine. J. Intell. Manuf. 2015, 26, 999–1010. [Google Scholar] [CrossRef]
- Hafezalkotob, A.; Hafezalkotob, A. Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Eng. Appl. Artif. Intell. 2017, 57, 184–196. [Google Scholar] [CrossRef]
- Ayaǧ, Z.; Özdemir, R.G. An intelligent approach to machine tool selection through fuzzy analytic network process. J. Intell. Manuf. 2011, 22, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.C.; Yang, C.B. Evaluation of machine selection by the AHP method. J. Mater. Process. Technol. 1996, 57, 253–258. [Google Scholar] [CrossRef]
- Xia, Y.M.; Lin, L.K.; Wu, D.; Jia, L.H.; Chen, Z.; Bian, Z.K. Geological adaptability matching design of disc cutter using multicriteria decision making approaches. J. Cent. South. Univ. 2018, 25, 843–854. [Google Scholar] [CrossRef]
C1 | Cn+1 | Cn | ||||
---|---|---|---|---|---|---|
Weights | ||||||
Limiters (L) /Boosters (B) | L1−1... L1−n | Ln+1−1... Ln+1−n | Ln−1... Ln−n | |||
Based on C1 | Average | Based on Cn+1 | Average | Based on Cn | Average | |
A1 without L | ||||||
A1 based on L1-1 | ||||||
A1 based on … | ||||||
A1 based on L1-n | ||||||
An+1 without L | ||||||
An+1 based on Ln+1-1 | ||||||
An+1 based on … | ||||||
An+1 based on Ln+1-n | ||||||
An without L | ||||||
An based on Ln-1 | ||||||
An based on … | ||||||
An based on Ln-n |
Supportive/Backup Criteria | C1 | C2 | Cn-1 | Cn |
Cs1−1 | C2*−s1 | Cs1−n−1−sb1 | … | |
Cs2−1 | Cs1−2 | Cn−1*−s2 | … | |
Cu1-1 | … | … | … | |
A1 | ... | … | … | … |
Reserved A1 | … | … | … | … |
Reserved A1 | … | … | … | … |
Reserved A1 | … | … | … | … |
… | … | … | … | … |
… | … | … | … | … |
… | … | … | … | … |
An | … | … | … | … |
Factors | High-Loading Terms |
---|---|
Factor 1 | Rock, diamet, economi, weight, load, max, altern, kw, divers, secondary, conform |
Factor 2 | Consumpt, compat, energi, service, price, install, wast, multi, rel, power, technic, environment, space |
Factor 3 | Setup, product, custom. Integr, sub, eas, property, user |
Factor 4 | Mm, fig, shift, labor, rework, scrap, capit, pallet depreci, axi |
Factor 5 | Etc, cnc, rotary, adapt, tool, machin, deform, spindle, drive, failure, thermal, taper, environ, extinguish, fire |
Criteria or Factors | Sub-Criteria or Sub Factor | Methodology | Representative Articles |
---|---|---|---|
Size and Precision | Ultimate load capacity, Diversity of materials and structure, Weight, Machine dimensions, Maximum speed, Maximum tool diameter, Product conformance, | Fuzzy DEMATEL and entropy weighting and later defuzzification VIKOR, fuzzy AHP and grey relational analysis, SWARA and COPRAS-G methods AHP Fuzzy ANP | [80] [79] [77] [81] [82] |
Cost and Serviceability | Price, Energy consumption, Maintenance cost, Waste amount, Operation cost, Quality of technical service, Service training, Repair Service | ANP and grey relational analysis Fuzzy ANP and PROMETHEE AHP AHP TOPSIS and fuzzy ANP | [83] [84] [85] [86] [87] |
Flexibility | Setup time, Installation easiness, Ease of learning, Ease of use, Integration, Properties, User friendliness, | Fuzzy ANP VIKOR AHP TOPSIS and fuzzy ANP Fuzzy ANP | [88] [89] [85] [87] [90] |
Productivity | Depreciation quality, Scrap and rework reliability, Pallet changer and fixture, Labor cost, Operation shifts, | ANP and grey relational analysis Fuzzy ANP and PROMETHEE Fuzzy ANP AHP | [83] [84] [82] [91] |
Technical Features and Safety | Capacity of rotary table, Thermal deformation, Spindle speed, Spindle power, Adaptability, Failure rate, Tool changer time, Fire extinguisher, Number of tapers, Reliability of drive system, | AHP and TOPSIS SWARA and COPRAS-G TOPSIS and fuzzy ANP Fuzzy ANP AHP | [92] [77] [87] [90] [85] |
Criteria | Sub-Criteria | Number of Occurrences | Sub-Criteria Weight | Criteria Weight |
---|---|---|---|---|
Size and Precision | Ultimate load capacity | 3 | 0.11 | 0.18 |
Diversity of materials and structure | 2 | 0.07 | ||
Weight | 6 | 0.22 | ||
Machine dimensions | 6 | 0.22 | ||
Maximum speed | 4 | 0.15 | ||
Maximum tool diameter | 4 | 0.15 | ||
Product conformance | 2 | 0.07 | ||
Sum | 27 | 1 | ||
Cost and Serviceability | Price | 5 | 0.10 | 0.34 |
Energy Consumption | 5 | 0.10 | ||
Maintenance Cost | 14 | 0.28 | ||
Waste amount | 2 | 0.04 | ||
Operation Cost | 8 | 0.16 | ||
Quality of Technical Service | 1 | 0.02 | ||
Service training | 10 | 0.20 | ||
Repair Service | 5 | 0.10 | ||
Sum | 50 | 1 | ||
Flexibility | Setup Time | 4 | 0.18 | 0.15 |
Installation easiness | 6 | 0.27 | ||
Ease of Learning | 3 | 0.14 | ||
Ease of Use | 2 | 0.09 | ||
Integration | 1 | 0.05 | ||
Properties | 2 | 0.09 | ||
User Friendliness | 4 | 0.18 | ||
Sum | 22 | 1 | ||
Productivity | Depreciation Quality | 3 | 0.23 | 0.1 |
Scrap & Rework Reliability | 3 | 0.23 | ||
Pallet Changer & Fixture | 2 | 0.15 | ||
Labor Cost | 3 | 0.23 | ||
Operation Shifts | 2 | 0.15 | ||
Sum | 13 | 1 | ||
Technical Features and Safety | Capacity of Rotary Table | 5 | 0.14 | 0.25 |
Thermal Deformation | 5 | 0.14 | ||
Spindle Speed | 4 | 0.11 | ||
Spindle Power | 2 | 0.05 | ||
Adaptability | 5 | 0.14 | ||
Failure Rate | 4 | 0.11 | ||
Tool Changer Time | 1 | 0.03 | ||
Fire Extinguisher | 3 | 0.08 | ||
Number of Taper | 4 | 0.11 | ||
Reliability of Drive System | 4 | 0.11 | ||
Sum | 37 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemkhani Zolfani, S.; Derakhti, A. Synergies of Text Mining and Multiple Attribute Decision Making: A Criteria Selection and Weighting System in a Prospective MADM Outline. Symmetry 2020, 12, 868. https://doi.org/10.3390/sym12050868
Hashemkhani Zolfani S, Derakhti A. Synergies of Text Mining and Multiple Attribute Decision Making: A Criteria Selection and Weighting System in a Prospective MADM Outline. Symmetry. 2020; 12(5):868. https://doi.org/10.3390/sym12050868
Chicago/Turabian StyleHashemkhani Zolfani, Sarfaraz, and Arman Derakhti. 2020. "Synergies of Text Mining and Multiple Attribute Decision Making: A Criteria Selection and Weighting System in a Prospective MADM Outline" Symmetry 12, no. 5: 868. https://doi.org/10.3390/sym12050868
APA StyleHashemkhani Zolfani, S., & Derakhti, A. (2020). Synergies of Text Mining and Multiple Attribute Decision Making: A Criteria Selection and Weighting System in a Prospective MADM Outline. Symmetry, 12(5), 868. https://doi.org/10.3390/sym12050868