# Inflation in Supergravity from Field Redefinitions

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Transformation of the Kähler Potential

## 3. Prototypes of Models

#### 3.1. Monomial Models

#### 3.2. Locally Flat Potentials

#### 3.3. Generalization of the Starobinsky Inflation

#### 3.4. The Log${}^{2}\varphi $ Model for $K={K}_{-}$

#### The $K={K}_{+}$ Scenario

#### 3.5. A Simple Plateau Model

#### 3.6. Plateau from the Modular Transformation

#### 3.7. Bell-Curve Potentials

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett.
**1980**, 91, 99. [Google Scholar] [CrossRef] - Lyth, D.H.; Riotto, A. Particle physics models of inflation and the cosmological density perturbation. Phys. Rep.
**1999**, 314, 1. [Google Scholar] [CrossRef] [Green Version] - Sato, K. First Order Phase Transition of a Vacuum and Expansion of the Universe. Mon. Not. Roy. Astron. Soc.
**1981**, 195, 467. [Google Scholar] [CrossRef] - Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D
**1981**, 23, 347. [Google Scholar] [CrossRef] [Green Version] - Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. X. Constraints on inflation. arXiv
**2018**, arXiv:1807.06211. [Google Scholar] - Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary α-Attractors. JHEP
**2013**, 1311, 198. [Google Scholar] [CrossRef] [Green Version] - Artymowski, M.; Rubio, J. Endlessly flat scalar potentials and α-attractors. Phys. Lett. B
**2016**, 761, 111. [Google Scholar] [CrossRef] [Green Version] - Dimopoulos, K.; Artymowski, M. Initial conditions for inflation. Astropart. Phys.
**2017**, 94, 11. [Google Scholar] [CrossRef] [Green Version] - Kawasaki, M.; Yamaguchi, M.; Yanagida, T. Natural chaotic inflation in supergravity. Phys. Rev. Lett.
**2000**, 85, 3572. [Google Scholar] [CrossRef] [Green Version] - Ben-Dayan, I.; Einhorn, M.B. Supergravity Higgs Inflation and Shift Symmetry in Electroweak Theory. JCAP
**2010**, 1012, 2. [Google Scholar] [CrossRef] [Green Version] - Nakayama, K.; Takahashi, F. Higgs Chaotic Inflation in Standard Model and NMSSM. JCAP
**2011**, 1102, 10. [Google Scholar] [CrossRef] - Badziak, M.; Olechowski, M. Volume modulus inflation and a low scale of SUSY breaking. JCAP
**2008**, 807, 21. [Google Scholar] [CrossRef] [Green Version] - Ben-Dayan, I.; Brustein, R.; de Alwis, S.P. Models of Modular Inflation and Their Phenomenological Consequences. JCAP
**2008**, 807, 11. [Google Scholar] [CrossRef] [Green Version] - Covi, L.; Gomez-Reino, M.; Gross, C.; Louis, J.; Palma, G.A.; Scrucca, C.A. Constraints on modular inflation in supergravity and string theory. JHEP
**2008**, 808, 55. [Google Scholar] [CrossRef] [Green Version] - Kallosh, R.; Linde, A.; Rube, T. General inflaton potentials in supergravity. Phys. Rev. D
**2011**, 83, 43507. [Google Scholar] [CrossRef] [Green Version] - Volovik, G.; Zubkov, M. Emergent Weyl spinors in multi-fermion systems. Nucl. Phys. B
**2014**, 881, 514–538. [Google Scholar] [CrossRef] - Gorbar, E.; Miransky, V.; Shovkovy, I. Chiral anomaly, dimensional reduction, and magnetoresistivity of Weyl and Dirac semimetals. Phys. Rev. B
**2014**, 89, 85126. [Google Scholar] [CrossRef] [Green Version] - Parrikar, O.; Hughes, T.L.; Leigh, R.G. Torsion, Parity-odd Response and Anomalies in Topological States. Phys. Rev. D
**2014**, 90, 105004. [Google Scholar] [CrossRef] [Green Version] - Horava, P. Stability of Fermi surfaces and K-theory. Phys. Rev. Lett.
**2005**, 95, 16405. [Google Scholar] [CrossRef] [Green Version] - Volovik, G. The Universe in a helium droplet. Int. Ser. Monogr. Phys.
**2006**, 117, 1–526. [Google Scholar] - Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett.
**2015**, 114, 141302. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Dalianis, I.; Watanabe, Y. Probing the BSM physics with CMB precision cosmology: An application to supersymmetry. JHEP
**2018**, 2, 118. [Google Scholar] [CrossRef] [Green Version] - Boubekeur, L.; Lyth, D.H. Hilltop inflation. JCAP
**2005**, 507, 10. [Google Scholar] [CrossRef] [Green Version] - Ben-Dayan, I.; Jing, S.; Westphal, A.; Wieck, C. Accidental inflation from Kähler uplifting. JCAP
**2014**, 1403, 54. [Google Scholar] [CrossRef] - Ben-Dayan, I.; Brustein, R. Cosmic Microwave Background Observables of Small Field Models of Inflation. JCAP
**2010**, 1009, 7. [Google Scholar] [CrossRef] - Pinhero, T.; Pal, S. Realising Mutated Hilltop Inflation in Supergravity. Phys. Lett. B
**2019**, 796, 220. [Google Scholar] [CrossRef] - Hamada, Y.; Kawai, H.; Kawana, K. Saddle point inflation in string-inspired theory. PTEP
**2015**, 2015, 91B01. [Google Scholar] [CrossRef] [Green Version] - Kallosh, R.; Linde, A.; Roest, D. Large field inflation and double α-attractors. JHEP
**2014**, 1408, 52. [Google Scholar] [CrossRef] - Kallosh, R.; Linde, A. Superconformal generalizations of the Starobinsky model. JCAP
**2013**, 1306, 28. [Google Scholar] [CrossRef] [Green Version] - Tsujikawa, S.; Ohashi, J.; Kuroyanagi, S.; Felice, A.D. Planck constraints on single-field inflation. Phys. Rev. D
**2013**, 88, 23529. [Google Scholar] [CrossRef] [Green Version] - Pinhero, T. Natural α-Attractors from $\mathcal{N}$ = 1 Supergravity via flat Kähler Manifolds. arXiv
**2018**, arXiv:1812.05406. [Google Scholar] - Adams, F.C.; Bond, J.R.; Freese, K.; Frieman, J.A.; Olinto, A.V. Natural inflation: Particle physics models, power law spectra for large scale structure, and constraints from COBE. Phys. Rev. D
**1993**, 47, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mukhanov, V. Inflation without Selfreproduction. Fortsch. Phys.
**2015**, 63, 36. [Google Scholar] [CrossRef] [Green Version] - Felder, G.N.; Kofman, L.; Linde, A.D. Instant preheating. Phys. Rev. D
**1999**, 59, 123523. [Google Scholar] [CrossRef] [Green Version] - Ford, L.H. Gravitational Particle Creation and Inflation. Phys. Rev. D
**1987**, 35, 2955. [Google Scholar] [CrossRef] - Artymowski, M.; Czerwinska, O.; Lalak, Z.; Lewicki, M. Gravitational wave signals and cosmological consequences of gravitational reheating. JCAP
**2018**, 1804, 46. [Google Scholar] [CrossRef] [Green Version] - Berera, A.; Brahma, S.; Calderón, J.R. Role of trans-Planckian modes in cosmology. arXiv
**2003**, arXiv:2003.07184. [Google Scholar] - Brahma, S. Trans-Planckian censorship conjecture from the swampland distance conjecture. Phys. Rev. D
**2020**, 101, 46013. [Google Scholar] [CrossRef] [Green Version] - Cai, R.; Wang, S. A refined trans-Planckian censorship conjecture. arXiv
**2019**, arXiv:1912.00607. [Google Scholar] - Ben-Dayan, I. Draining the Swampland. Phys. Rev. D
**2019**, 99, 101301. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Both panels show the potential of the (22) model for different values of p for $M=1$ and $M=p\phantom{\rule{0.166667em}{0ex}}\mu $ (left and right panels respectively), where M and $\mu $ are p-independent constants. Inflation takes place around the local maximum of the potential. Right panel: Note how the local maximum is moving towards bigger ${u}_{R}$ for bigger p.

**Figure 2.**Left Panel: results for the model (22) model for $M=1$, $p\in (7,39)$ and ${N}_{\U0001f7c9}=50$ and ${N}_{\U0001f7c9}=60$ (orange and blue dots respectively). Right panel: The same results for $M=10$. Note how the predicted value of r rise up with M.

**Figure 3.**Left panel: Inflationary potential for different values of M. For small M the last 60 e-folds of inflation happens on the plateau, while for $M\gg 1$ the inflationary potential resembles the $V\propto {\varphi}^{2}$ model. Right panel: $r\left({n}_{s}\right)$ for ${N}_{\U0001f7c9}=50$ and ${N}_{\U0001f7c9}=60$ (dashed and solid lines respectively). Red, pink, orange and green points corresponds to $M=\sqrt{3/2}$, $M=5$, $M=10$ and $M=50$ respectively. The black points correspond to $r=4(1-{n}_{s})$, which is the result of the $V\propto {\varphi}^{2}$ model. For ${N}_{\U0001f7c9}=50$ and ${N}_{\U0001f7c9}=60$ one obtains the consistency with the data for $M<11$ and $M<17.5$ respectively.

**Figure 4.**Results for the (33) model for $M=1$. Solid (dashed) lines correspond to $K={K}_{+}$ ($K={K}_{-}$), while red and blue dots represent ${N}_{\U0001f7c9}=60$ and ${N}_{\U0001f7c9}=50$ respectively. The consistency with the data requires ${N}_{\U0001f7c9}\simeq 50$.

**Figure 5.**Both panels present scalar potential from Equation (31) with $K={K}_{+}$, as a function of ${u}_{R}$ and ${u}_{I}$. During inflation $|{u}_{R}|\ll M\phantom{\rule{4pt}{0ex}},\phantom{\rule{4pt}{0ex}}|{u}_{I}|\gg M$ and after inflation the field rolls towards one of the minima at ${u}_{I}=0$ and ${u}_{R}=\pm M$ (left panel). For $M>{M}_{c}$, the field is stuck in the dS vacuum separated from the true vacuum by a local maximum (right panel). Blue lines present the evolution of fields ${u}_{R}$ and ${u}_{I}$ from the inflationary plateau to their minima.

**Figure 6.**Left panel: The potential (35) for $M\simeq {M}_{c}$. For $M={M}_{c}$ one obtains a saddle point, around which one obtains a second phase of inflation. For $M>{M}_{c}$ one obtains a local maximum, which separates the inflaton from the Minkowski vacuum. Right panel: results for the (35) on the $({n}_{s},r)$ plane. Dots correspond to $M=(1-k\times 5\times {10}^{-6}){M}_{c}$, where $k\in \{12,13,\dots ,20\}$ and bigger k corresponds to bigger ${n}_{s}$. Inflation can be only consistent with the data for $(1-9.5\times {10}^{-5}){M}_{c}\lesssim M\lesssim (1-7\times {10}^{-5}){M}_{c}$, which means that the model requires significant fine-tuning in order to be within the $2\sigma $ regime of Planck/BICEP results.

**Figure 7.**Left panel: The inflationary potential of model (36) and its generalization $V={\Lambda}^{2}{(1-{u}_{R}^{-1})}^{2n}$. Right panel: The tensor-to-scalar ratio and the spectral index for ${N}_{\U0001f7c9}=50$ and ${N}_{\U0001f7c9}=60$ (solid line, blue and red dots respectively). Dashed and dotted lines represent results for the generalization of the model, for which one has taken $f\left(T\right)={T}^{-n}/\sqrt{2}$. Solid, dashed and dotted lines correspond to $n=1$, $n=2$ and $n=4$ respectively.

**Figure 8.**Potential (45) for different values of $c/a$. Please note that for $c\gg a$, inflation takes place predominantly at the plateau, while for $c\ll a$ the last 60 e-folds of inflation happen around the ${\varphi}^{2}$ slope.

**Figure 9.**Results for the (45) model for both $c/a>1$ and $c/a<1$. Blue and red dots represent $N=50$ and $N=60$ respectively. Left panel: We consider $k=c/a$ and $k\in \{1,2,\dots ,10\}$. Right panel: $k=a/c$ and $k\in \{1,2,\dots ,20\}$. Note how in the $c\ll a$ limit one moves towards the results of ${\varphi}^{2}$ inflation.

**Figure 10.**Potential (51) for $p>0$ and $p<0$ (left and right panel respectively). For $p>0$ inflation happens around the local maximum and the potential does not have a minimum. For $p<0$ inflation happens on one of the infinite plateaus separated by the minimum.

**Figure 11.**Results for the (51) model for ${N}_{\U0001f7c9}=60$ and $p<0$ or $p>0$ (solid and dashed lines respectively). Red, orange, gray, blue and pink lines represent $M=1$, $M=10$, $M=20$, $M=30$ and $M=100$ and $p\in (-0.44,0.16)$, $p\in (-1.3,0.152)$, $p\in (-1.7,0.132)$, $p\in (-0.28,0.106)$ and $p\in (-0.053,0.042)$ respectively. Note how results for different M reproduce the result of the Starobinsky inflation in the $p\to 0$ limit. In addition, the results of the (51) model may cover the whole $2\sigma $ regime of the Planck/BICEP data.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Artymowski, M.; Ben-Dayan, I.
Inflation in Supergravity from Field Redefinitions. *Symmetry* **2020**, *12*, 806.
https://doi.org/10.3390/sym12050806

**AMA Style**

Artymowski M, Ben-Dayan I.
Inflation in Supergravity from Field Redefinitions. *Symmetry*. 2020; 12(5):806.
https://doi.org/10.3390/sym12050806

**Chicago/Turabian Style**

Artymowski, Michał, and Ido Ben-Dayan.
2020. "Inflation in Supergravity from Field Redefinitions" *Symmetry* 12, no. 5: 806.
https://doi.org/10.3390/sym12050806