The Effect of Prolonged Running on the Symmetry of Biomechanical Variables of the Lower Limb Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Test Protocol
2.2.1. Biomechanical Variable Collection
2.2.2. Running-Induced Fatigue Protocol
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Polak, M.; Trivers, R. The science of symmetry in biology. Trends Ecol. Evol. 1994, 9, 122–124. [Google Scholar] [CrossRef]
- Kujanova, M.; Bigoni, L.; Velemínská, J.; Velemínský, P. Limb bones asymmetry and stress in medieval and recent populations of Central Europe. Int. J. Osteoarchaeol. 2008, 18, 476–491. [Google Scholar] [CrossRef]
- Polk, J.D.; Stumpf, R.M.; Rosengren, K. Limb dominance, foot orientation and functional asymmetry during walking gait. Gait Posture 2017, 52, 140–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.M.; Eng, J.J. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 2003, 18, 23–28. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, W.; Zhao, L.; Sun, D.; Huang, Y.; Gu, Y. Sports-related injuries sustained by disabled athletes in Winter Paralympic Games: A systematic review. J. Med. Imaging Health Inform. 2020, 10, 1136–1143. [Google Scholar] [CrossRef]
- Schache, A.G.; Wrigley, T.V.; Baker, R.; Pandy, M.G. Biomechanical response to hamstring muscle strain injury. Gait Posture 2009, 29, 332–338. [Google Scholar] [CrossRef]
- Sadeghi, H. Local or global asymmetry in gait of people without impairments. Gait Posture 2003, 17, 197–204. [Google Scholar] [CrossRef]
- Radzak, K.N.; Putnam, A.M.; Tamura, K.; Hetzler, R.K.; Stickley, C.D. Asymmetry between lower limbs during rested and fatigued state running gait in healthy individuals. Gait Posture 2017, 51, 268–274. [Google Scholar] [CrossRef]
- Haugen, T.A.; Danielsen, J.; McGhie, D.; Sandbakk, Ø.; Ettema, G. Kinematic stride cycle asymmetry is not associated with sprint performance and injury prevalence in athletic sprinters. Scand. J. Med. Sci. Sports 2017, 28, 1001–1008. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef]
- Furlong, L.-A.; Egginton, N.L. Kinetic asymmetry during running at preferred and non-preferred speeds. Med. Sci. Sports Exerc. 2018, 50, 1241–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, W.A.; Weinhandl, J.T.; Kernozek, T.W.; Cobb, S.C.; Keenan, K.; O’Connor, K.M. The effects of single-leg landing technique on ACL loading. J. Biomech. 2011, 44, 1845–1851. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 2000, 12, 34–45. [Google Scholar] [CrossRef]
- Levine, D.; Richards, J.; Whittle, M.W. Whittle’s Gait Analysis-E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Brown, A.M.; Zifchock, R.A.; Hillstrom, H.J. The effects of limb dominance and fatigue on running biomechanics. Gait Posture 2014, 39, 915–919. [Google Scholar] [CrossRef]
- Niu, W.; Wang, Y.; He, Y.; Fan, Y.; Zhao, Q. Kinematics, kinetics, and electromyogram of ankle during drop landing: A comparison between dominant and non-dominant limb. Hum. Mov. Sci. 2011, 30, 614–623. [Google Scholar] [CrossRef]
- Schiltz, M.; Lehance, C.; Maquet, D.; Bury, T.; Crielaard, J.-M.; Croisier, J.-L. Explosive Strength Imbalances in Professional Basketball Players. J. Athl. Train. 2009, 44, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhang, X.; Wang, J.; Yang, Y.; Xu, Y.; Fu, W. Changes in Ground Reaction Forces, Joint Mechanics, and Stiffness during Treadmill Running to Fatigue. Appl. Sci. 2019, 9, 5493. [Google Scholar] [CrossRef] [Green Version]
- Winter, S.C.; Gordon, S.; Watt, K. Effects of fatigue on kinematics and kinetics during overground running: A systematic review. J. Sports Med. Phys. Fit. 2016, 57, 887–899. [Google Scholar]
- Anbarian, M.; Esmaeili, H.; Esmaili, H. Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types. Gait Posture 2016, 48, 52–56. [Google Scholar] [CrossRef]
- Farris, D.J.; Sawicki, G.S. The mechanics and energetics of human walking and running: A joint level perspective. J. R. Soc. Interface 2011, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Fourchet, F.; Kelly, L.A.; Horobeanu, C.; Loepelt, H.; Taiar, R.; Millet, G.P. High-Intensity Running and Plantar-Flexor Fatigability and Plantar-Pressure Distribution in Adolescent Runners. J. Athl. Train. 2015, 50, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Hanley, B.; Tucker, C.B. Gait variability and symmetry remain consistent during high-intensity 10,000 m treadmill running. J. Biomech. 2018, 79, 129–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.W.-C.; Lam, W.-K.; Lee, W.C.-C. Gait asymmetry and variability in older adults during long-distance walking: Implications for gait instability. Clin. Biomech. 2020, 72, 37–43. [Google Scholar] [CrossRef]
- Koblbauer, I.F.; Van Schooten, K.; Verhagen, E.; Van Dieën, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Hannigan, J.; Pollard, C.D. Differences in running biomechanics between a maximal, traditional, and minimal running shoe. J. Sci. Med. Sport 2019, 23, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Mei, Q.; Gu, Y.; Xiang, L.; Baker, J.S.; Fernandez, J. Foot Pronation Contributes to Altered Lower Extremity Loading After Long Distance Running. Front. Physiol. 2019, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: New Milford, CT, USA, 1998. [Google Scholar]
- Fourchet, F.; Girard, O.; Kelly, L.A.; Horobeanu, C.; Millet, G.P. Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J. Sci. Med. Sport 2015, 18, 199–203. [Google Scholar] [CrossRef]
- Bezodis, I.N.; Kerwin, D.G.; Salo, A.I.T. Lower-Limb Mechanics during the Support Phase of Maximum-Velocity Sprint Running. Med. Sci. Sports Exerc. 2008, 40, 707–715. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Günther, M.; Blickhan, R. Joint stiffness of the ankle and the knee in running. J. Biomech. 2002, 35, 1459–1474. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell, H.P.; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Pease, W.; Bowyer, B.; Kadyan, V. Human walking, Physical Medicine and Rehabilitation, Principles and Practice, 4th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 155–168. [Google Scholar]
- Sadeghi, H.; Allard, P.; Duhaime, M. Functional gait asymmetry in able-bodied subjects. Hum. Mov. Sci. 1997, 16, 243–258. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Exell, T.A.; Irwin, G.; Gittoes, M.J.; Kerwin, D.G. Implications of intra-limb variability on asymmetry analyses. J. Sports Sci. 2012, 30, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Higginson, J.; McCaw, S.; Royer, T. Side-to-side differences in overuse running injury susceptibility: A retrospective study. Hum. Mov. Sci. 2008, 27, 888–902. [Google Scholar] [CrossRef]
- Gray, E.G.; Basmajian, J.V. Electromyography and cinematography of leg and foot (“normal” and flat) during walking. Anat. Rec. Adv. Integr. Anat. Evol. Boil. 1968, 161, 1–15. [Google Scholar] [CrossRef]
- Meardon, S.; Hamill, J.; Derrick, T.R. Running injury and stride time variability over a prolonged run. Gait Posture 2011, 33, 36–40. [Google Scholar] [CrossRef]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef]
- Jiang, C. The Effect of Basketball Shoe Collar on Ankle Stability: A Systematic Review and Meta-Analysis. Phys. Act. Health 2020, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
Joint Variables | Symmetry Angle (%) ± SD | ||
---|---|---|---|
Pre-Fatigue | Fatigue | p-Value | |
Ankle | |||
Dorsiflexion | 9.63 (6.98) | 13.67 (7.65) | 0.28 |
Plantarflexion | 20.10 (12.53) | 21.66 (36.07) | 0.61 |
Dorsiflexion velocity | 3.55 (3.36) | 3.61 (2.34) | 0.87 |
Plantarflexion velocity | 5.19 (3.43) | 2.97 (3.32) | 0.11 |
Dorsiflexion moment | 16.30 (14.54) | 22.45 (16.09) | 0.11 |
Plantarflexion moment | 22.03 (20.49) | 28.69 (18.78) | 0.57 |
Dorsiflexion power | 19.85 (16.73) | 26.98 (20.30) | 0.57 |
Plantarflexion power | 18.67 (16.25) | 25.97 (19.59) | 0.50 |
Stiffness | 18.66 (16.62) | 26.17 (19.59) | 0.31 |
Joint Variables | Symmetry Angle (%) ± SD | ||
---|---|---|---|
Pre-Fatigue | Fatigue | p-Value | |
Knee | |||
Extension | 8.11 (7.36) | 22.25 (20.78) | 0.50 |
Flexion | 4.66 (2.79) | 8.98 (4.23) | 0.02 * |
Extension velocity | 8.94 (5.77) | 3.03 (1.70) | 0.02 * |
Flexion velocity | 4.60 (4.58) | 4.39 (2.58) | 0.96 |
Extension moment | 16.53 (13.18) | 29.17 (16.38) | 0.33 |
Flexion moment | 14.87 (12.20) | 21.19 (15.37) | 0.19 |
Extension power | 17.38 (9.50) | 16.48 (13.02) | 0.11 |
Flexion power | 24.07 (13.88) | 25.47 (18.78) | 0.91 |
Stiffness | 14.40 (12.71) | 22.06 (13.72) | 0.11 |
Joint Variables | Symmetry Angle (%) ± SD | ||
---|---|---|---|
Pre-Fatigue | Fatigue | p-Value | |
Hip | |||
Flexion | 2.43 (1.71) | 13.14 (6.88) | 0.00 * |
Extension | 18.12 (29.96) | 41.24 (34.76) | 0.02 * |
Flexion velocity | 22.43 (16.47) | 16.98 (17.36) | 0.00 * |
Extension velocity | 4.60 (4.58) | 4.39 (2.58) | 0.61 |
Flexion moment | 3.01 (2.23) | 5.62 (3.37) | 0.02 * |
Extension moment | 14.87 (12.20) | 21.19 (15.37) | 0.53 |
Flexion power | 13.20 (12.91) | 22.11 (12.92) | 0.82 |
Extension power | 13.12 (6.91) | 12.95 (8.85) | 0.91 |
Stiffness | 6.04 (5.01) | 7.73 (8.46) | 0.53 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Mei, Q.; Fekete, G.; Baker, J.S.; Gu, Y. The Effect of Prolonged Running on the Symmetry of Biomechanical Variables of the Lower Limb Joints. Symmetry 2020, 12, 720. https://doi.org/10.3390/sym12050720
Gao Z, Mei Q, Fekete G, Baker JS, Gu Y. The Effect of Prolonged Running on the Symmetry of Biomechanical Variables of the Lower Limb Joints. Symmetry. 2020; 12(5):720. https://doi.org/10.3390/sym12050720
Chicago/Turabian StyleGao, Zixiang, Qichang Mei, Gusztáv Fekete, Julien S Baker, and Yaodong Gu. 2020. "The Effect of Prolonged Running on the Symmetry of Biomechanical Variables of the Lower Limb Joints" Symmetry 12, no. 5: 720. https://doi.org/10.3390/sym12050720