# Quasielastic Lepton Scattering off Two-Component Dark Matter in Hypercolor Model

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Vectorlike Hypercolor Model

## 3. Scattering of Leptons off Hypercolor DM Particles

## 4. Numerical Analysis of Leptons Scattering off Hypercolor DM Components

## 5. Can the Signals of Secondary Neutrinos Be Observed?

## 6. Discussion and Conclusions

- creation of additional neutrino pairs, ${\nu}_{l}B(\tilde{\pi})\to {\nu}_{l}{\nu}_{{l}^{\prime}}{\overline{\nu}}_{{l}^{\prime}}B(\tilde{\pi})$,
- creation of ${l}^{+}{l}^{-}-$pairs, ${\nu}_{l}B(\tilde{\pi})\to {\nu}_{l}{l}^{+}{l}^{-}B(\tilde{\pi})$,
- reaction ${e}^{-}B(\tilde{\pi})\to {e}^{-}{l}^{+}{l}^{-}B(\tilde{\pi})$.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Khlopov, M.Y. Introduction to the special issue on indirect dark matter searches. Int. J. Mod. Phys. A
**2014**, 29, 1443002. [Google Scholar] [CrossRef] [Green Version] - Cirelli, M. Indirect Searches for Dark Matter: A status review. Pramana
**2012**, 79, 1021. [Google Scholar] [CrossRef] [Green Version] - Cirelli, M. Dark Matter Indirect searches: Phenomenological and theoretical aspects. J. Phys. Conf. Ser.
**2013**, 447, 012006. [Google Scholar] [CrossRef] - Roszkowski, L.; Sessolo, E.M.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rept. Prog. Phys.
**2018**, 81, 066201. [Google Scholar] [CrossRef] [Green Version] - Gaskins, J.M. A review of indirect searches for particle dark matter. Contemp. Phys.
**2016**, 57, 496–525. [Google Scholar] [CrossRef] - Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, D.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C
**2018**, 78, 203. [Google Scholar] [CrossRef] - Belotsky, K.M.; Esipova, E.A.; Kamaletdinov, A.K.; Shlepkina, E.S.; Solovyov, M.L. Indirect effects of dark matter. IJMPD
**2019**, 28, 1941011. [Google Scholar] [CrossRef] [Green Version] - Berezinsky, V.S.; Dokuchaev, V.I.; Eroshenko, Y.N. Small-scale clumps of dark matter. Physics-Uspekhi
**2014**, 57, 1–36. [Google Scholar] [CrossRef] [Green Version] - Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Chiral-symmetric technicolor with standard model Higgs boson. Phys. Rev. D.
**2013**, 88, 075009. [Google Scholar] [CrossRef] [Green Version] - Beylin, V.; Kuksa, V.; Vereshkov, G. Model of vectorlike technicolor. Phys. Part. Nucl. Lett.
**2016**, 13, 19–25. [Google Scholar] [CrossRef] - Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Vectorlike technineutron Dark Matter: Is a QCD-type Technicolor ruled out by XENON100? Eur. Phys. J. C.
**2014**, 2014 74, 2728. [Google Scholar] [CrossRef] [Green Version] - Kilic, C.; Okui, T.; Sundrum, R. Vector-like Confinement at the LHC. JHEP
**2010**, 018, 1093. [Google Scholar] [CrossRef] [Green Version] - Ryttov, T.A.; Sannino, F. Ultra Minimal Technicolor and its Dark Matter TIMP. Phys. Rev. D.
**2008**, 78, 115010. [Google Scholar] [CrossRef] [Green Version] - Foadi, R.; Frandsen, M.T.; Sannino, F. Technicolor dark matter. Phys. Rev. D
**2009**, 80, 037702. [Google Scholar] [CrossRef] [Green Version] - Frandsen, M.T.; Sannino, F. Isotriplet technicolor interacting massive particle as dark matter. Phys. Rev. D
**2010**, 81, 097704. [Google Scholar] [CrossRef] [Green Version] - Hambye, T. Hidden vector dark matter. JHEP
**2009**, 1, 028. [Google Scholar] [CrossRef] - Beylin, V.; Bezuglov, M.; Kuksa, V.; Volchanskiy, N. An analysis of a minimal vector-like extension of the Standard Model. Adv. High Energy Phys.
**2017**, 2017, 1765340. [Google Scholar] [CrossRef] [Green Version] - Cirelli, M.; Fornengo, N.; Strumia, A. Minimal dark matter. Nucl. Phys. B
**2006**, 753, 178. [Google Scholar] [CrossRef] [Green Version] - Beylin, V.; Khlopov, M.Y.; Kuksa, V.; Volchanskiy, N. Hadronic and hadron-like physics of dark matter. Symmetry
**2019**, 11, 587. [Google Scholar] [CrossRef] [Green Version] - Beylin, V.; Bezuglov, M.; Kuksa, V.; Tretiakov, E.; Yagozinskaya, A. On the scattering of a high-energy cosmic ray electrons off the dark matter. Int. J. Mod. Phys. A
**2019**, 6, 34. [Google Scholar] [CrossRef] - Beylin, V.; Bezuglov, M.; Tretiakov, E. Signals of Dark Matter in hypercolor vectorlike extension of the SM. Eur. Phys. J. Web Conf.
**2019**, 222, 04002. [Google Scholar] [CrossRef] - Weinberg, S. Implication of Dynamical Symmetry Breaking. Phys. Rev. D
**1976**, 13, 974996. [Google Scholar] [CrossRef] [Green Version] - Susskind, L. Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory. Phys. Rev. D
**1979**, 20, 2619–2625. [Google Scholar] [CrossRef] [Green Version] - Appelquist, T. Technicolor and fermion mass enhancement. In Research Directions for the Decade: Proceedings of the 1990 Summer Study on High Energy Physics; World Scientific: River Edge, NJ, USA, 1990; pp. 44–49. [Google Scholar]
- Farhi, E.; Susskind, L. Technicolor. Phys. Rep.
**1981**, 74, 277. [Google Scholar] [CrossRef] [Green Version] - Gell-Mann, M.; Lévy, M. The axial vector current in beta decay. Nuovo Cim.
**1960**, 16, 705–726. [Google Scholar] [CrossRef] - Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. Phys. Rev.
**1961**, 122, 345. [Google Scholar] [CrossRef] [Green Version] - Weinberg, S. A Model of Leptons. Phys. Rev. Lett.
**1967**, 19, 1264. [Google Scholar] [CrossRef] - Fariborz, A.H.; Park, N.W.; Schechter, J.; Naeem Shahid, M. Gauged linear sigma model and pion-pion scattering. Phys. Rev. D
**2009**, 80, 113001. [Google Scholar] [CrossRef] [Green Version] - Pasechnik, R.; Beylin, V.; Kuksa, V.; Vereshkov, G. Composite scalar Dark Matter from vector-like SU(2) confinement. Int. J. Mod. Phys. A
**2016**, 31, 1650036. [Google Scholar] [CrossRef] [Green Version] - Volchanskiy, N.; Kuksa, V.; Beylin, V. Models of hypercolor based on symplectic gauge group with three heavy vectorlike hyperquarks. Int. J. Mod. Phys. D
**2019**, 28, 13. [Google Scholar] [CrossRef] [Green Version] - Bai, Y.; Hill, R.J. Weakly Interacting Stable Pions. Phys. Rev. D
**2010**, 82, 111701. [Google Scholar] [CrossRef] [Green Version] - Antipin, O.; Redi, M.; Strumia, A.; Vigiani, E. Accidental Composite Dark Matter. JHEP
**2015**, 039, 1164. [Google Scholar] [CrossRef] [Green Version] - Cacciapaglia, G.; Sannino, F. Fundamental Composite (Goldstone) Higgs Dynamics. JHEP
**2014**, 1404, 111. [Google Scholar] [CrossRef] [Green Version] - Bennett, E.; Hong, D.K.; Lee, J.-W.; David Lin, C.-J.; Lucini, B.; Piai, M.; Vadacchino, D. Meson spectrum of Sp(4) lattice gauge theory with two fundamental Dirac fermions. arXiv
**2019**, arXiv:1911.00437. [Google Scholar] - Bennett, E.; Hong, D.K.; Lee, J.-W.; David Lin, C.-J.; Lucini, B.; Piai, M.; Vadacchino, D. Sp(4) gauge theories on the lattice: Nf=2 dynamical fundamental fermions. JHEP
**2019**, 53, 12. [Google Scholar] [CrossRef] [Green Version] - Beylin, V.; Bezuglov, M.; Kuksa, V. Analysis of scalar dark matter in a minimal vectorlike standard model extension. Int. J. Mod. Phys. A
**2017**, 32, 1750042. [Google Scholar] [CrossRef] - Holdom, B. A dynamical origin for the top mass. Phys.Lett. B
**1994**, 336, 85–90. [Google Scholar] [CrossRef] [Green Version] - Gudnason, S.B.; Kouvaris, C.; Sannino, F. Dark Matter from New Technicolor theories. Phys. Rev. D
**2006**, 74, 095008. [Google Scholar] [CrossRef] [Green Version] - Khlopov, M.Y.; Couvaris, S. Strong interative massive particles from a strong coupled theory. Phys. Rev. D
**2008**, 77, 065002. [Google Scholar] [CrossRef] [Green Version] - Khlopov, M.Y.; Couvaris, S. Composite dark matter from a model with composite Higgs boson. Phys. Rev. D
**2008**, 78, 065040. [Google Scholar] [CrossRef] [Green Version] - Belotsky, K.; Khlopov, M.; Kouvaris, C.; Laletin, M. High Energy Positrons and Gamma Radiation from Decaying Constituents of a two-component Dark Atom Model. IJMPD
**2015**, 24, 1545004. [Google Scholar] [CrossRef] [Green Version] - Doff, A.; Natale, A.A. Technicolor models with coupled systems of Schwinger-Dyson equations. Phys. Rev. D
**2019**, 99, 055026. [Google Scholar] [CrossRef] [Green Version] - Kuksa, V.I. The convolution formula for a decay rate. Phys. Lett. B
**2006**, 2006 633, 545–549. [Google Scholar] [CrossRef] [Green Version] - Kuksa, V.I.; Volchanskiy, N.I. Factorization in the model of unstable particles with continuous masses. Cent. Eur. J. Phys.
**2013**, 11, 182–194. [Google Scholar] [CrossRef] - Kuksa, V.I.; Pasechnik, R.S. Near-threshold Z-pair production in the model of unstable particles with a smeared mass. IJMPA
**2008**, 23, 4125–4132. [Google Scholar] [CrossRef] - Pasechnik, R.; Kuksa, V. Finite-width effects in the near-threshold ZZZ and ZWW production at ILC. Mod. Phys. Lett. A
**2011**, 26, 1075. [Google Scholar] [CrossRef] [Green Version] - Gorchtein, M.; Profumo, S.; Ubaldi, L. Probing Dark Matter with AGN Jets. Phys. Rev. D
**2010**, 82, 083514. [Google Scholar] [CrossRef] [Green Version] - Profumo, S.; Ubaldi, L. Cosmic Ray-Dark Matter Scattering: A New Signature of (Asymmetric) Dark Matter in the Gamma Ray Sky. JCAP
**2011**, 020, 1108. [Google Scholar] [CrossRef] [Green Version] - Gorchtein, M.; Profumo, S.; Ubaldi, L. Gamma rays from cosmic-ray proton scattering in AGN jets: The intra-cluster gas vastly outshines dark matter. JCAP
**2013**, 2013, 012. [Google Scholar] - Aharonian, F.; Akhperjanian, A.; Barres de Almeida, U.; Bazer-Bachi, A.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlohr, K.; Boisson, C.; Bochow, A.; et al. The energy spectrum of cosmic-ray electrons at TeV energies. Phys. Rev. Lett.
**2008**, 26. [Google Scholar] [CrossRef] [Green Version] - Kachelries, M.; Semikoz, D.V. Cosmic Ray Models. Nucl. Phys.
**2019**, 109, 103710. [Google Scholar] [CrossRef] [Green Version] - Lipari, P. The spectral shapes of the fluxes of electrons and positrons and the average residence time of cosmic rays in the Galaxy. Phys. Rev. D
**2019**, 99, 043005. [Google Scholar] [CrossRef] [Green Version] - Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Buckley, J.H.; Bugaev, V.; Connolly, M.P.; Cui, W.; Feng, Q.; et al. Measurement of Cosmic-ray Electrons at TeV energies. Phys. Rev. D
**2018**, 6, 062004. [Google Scholar] [CrossRef] [Green Version] - Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M.G.; Bigongiari, G.; Binns, W.R.; Bonechi, S.; Bongi, M.; Brogi, P.; et al. Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett.
**2017**, 119, 181101. [Google Scholar] [CrossRef] [Green Version] - Dutton, A.; Maccio, A.V. Cold dark matter haloes in the Planck era: Evolution of structural parameters for Einasto and NFW profiles. Mon. Not. R. Astron. Soc.
**2014**, 441, 4. [Google Scholar] [CrossRef] [Green Version] - Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, R.; Kameda, J.; Kishimoto, Y.; Miura, M.; et al. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation. Phys. Rev. D
**2016**, 94, 052001. [Google Scholar] [CrossRef] [Green Version] - Kochanov, A.A.; Morozova, A.D.; Sinegovskaya, T.S.; Sinegovskiy, S.I. Behaviour of the high-energy neutrino flux in the Earth’s atmosphere. Sol.-Terr. Phys.
**2015**, 1, 4. [Google Scholar] - Ahlers, M.; Helbing, K.; de los Heros, C.P. Probing particle physics with IceCube. Eur. Phys. J. C
**2018**, 78, 924. [Google Scholar] [CrossRef] - Ishihara, A. Extremely high energy neutrinos in six years of IceCube data. J. Phys. Conf. Ser.
**2016**, 718, 062027. [Google Scholar] [CrossRef] - Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science
**2013**, 342, 1242856. [Google Scholar] - Chiarusi, T.; Spurio, M. High-Energy Astrophysics with Neutrino Telescopes. Eur. Phys. J. C
**2010**, 65, 649–701. [Google Scholar] [CrossRef] - Karle, A. IceCube. In Proceedings of the 31th ICRC2009, Lodz, Poland, 7–15 July 2009; p. 1339. [Google Scholar]
- Niederhausen, H.; Xu, Y. High Energy Astrophysical Neutrino Flux Measurement Using Neutrino-induced Cascades Observed in 4 Years of IceCube Data. In Proceedings of the ICRC2017, Busan, Korea, 12–20 July 2017; p. 968. [Google Scholar] [CrossRef] [Green Version]
- Brayer, L.; Casier, M.; Golup, G.; van Eindhoven, N. The IceCube Neutrino Observatory—Contributions to ICRC 2015 Part I: Point Source Searches. In Proceedings of the ICRC2015, The Hague, The Netherlands, 30 July–6 August 2015; p. 1048, [arXiv:1510.05222]. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors. arXiv
**2015**, arXiv:1510.05222. [Google Scholar] - Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Small-scale clumps in the galactic halo and dark matter annihilation. Phys. Rev. D
**2003**, 68, 103003. [Google Scholar] [CrossRef] [Green Version] - Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Remnants of dark matter clumps. Phys. Rev. D
**2008**, 77, 083519. [Google Scholar] [CrossRef] [Green Version] - Berezinsky, V.; Dokuchaev, V.; Eroshenko, Y. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes. JCAP
**2013**, 59, 1311. [Google Scholar] [CrossRef] [Green Version] - Belotsky, K.; Kirillov, A.; Khlopov, M. Gamma-ray evidences of the dark matter clumps. Grav. Cosmol.
**2014**, 20, 47. [Google Scholar] [CrossRef] [Green Version] - Tasitsiomi, A.; Olinto, A.V. Detectability of neutralino clumps via atmospheric Cherenkov telescopes. Phys. Rev. D
**2002**, 66, 083006. [Google Scholar] [CrossRef] [Green Version] - Fornengo, N.; Masiero, A.; Queiroz, F.S.; Yaguna, C.E. On the role of neutrinos telescopes in the search for Dark Matter annihilations in the Sun. JCAP
**2017**, 2017, 012. [Google Scholar] [CrossRef] [Green Version]

**Figure 3.**Quasielastic electron scattering off H-baryon Dark Matter component through intermediate W-boson.

**Figure 5.**Total cross section of neutrino production in the laboratory system by quasielastic scattering of cosmic electrons with energies (1–20) TeV off H-baryon Dark Matter component with (

**a**) ${m}_{B}=600$ GeV and (

**b**) ${m}_{B}=1200$ GeV.

**Table 1.**Part of the lightest (pseudo)scalar H-hadrons and corresponding H-quark currents in $SU{(2)}_{HC}$ model.

State | H-Quark Current | ${\mathit{T}}^{\tilde{\mathit{G}}}({\mathit{J}}^{\mathbf{PC}})$ | $\tilde{\mathit{B}}$ | ${\mathit{Q}}_{\mathbf{em}}$ |
---|---|---|---|---|

$\sigma $ | $\overline{Q}Q$ | ${0}^{+}({0}^{++})$ | 0 | 0 |

$\eta $ | $i\overline{Q}{\gamma}_{5}Q$ | ${0}^{+}({0}^{-+})$ | 0 | 0 |

${a}_{k}$ | $\overline{Q}{\tau}_{k}Q$ | ${1}^{-}({0}^{++})$ | 0 | $\pm 1$, 0 |

${\pi}_{k}$ | $i\overline{Q}{\gamma}_{5}{\tau}_{k}Q$ | ${1}^{-}({0}^{-+})$ | 0 | $\pm 1$, 0 |

A | ${\overline{Q}}^{\mathrm{C}}{\u03f5}_{ab}{\u03f5}_{\underline{a}\underline{b}}Q$ | ${0}^{\phantom{+}}({0}^{-\phantom{+}})$ | 1 | ${Y}_{Q}$ |

B | $i{\overline{Q}}^{\mathrm{C}}{\u03f5}_{ab}{\u03f5}_{\underline{a}\underline{b}}{\gamma}_{5}Q$ | ${0}^{\phantom{+}}({0}^{+\phantom{+}})$ | 1 | ${Y}_{Q}$ |

**Table 2.**Fluxes of secondary neutrinos for different interval of incident electron energies and two possible values of H-hadron mass, $\alpha =0.11$.

Interval of Initial Electron Energies, $\mathbf{TeV}$ | Neutrino Flux, ${\mathit{m}}_{\mathit{B}}=0.6\phantom{\rule{0.166667em}{0ex}}\mathbf{TeV}$ | Neutrino Flux, ${\mathit{m}}_{\mathit{B}}=1.2\phantom{\rule{0.166667em}{0ex}}\mathbf{TeV}$ |
---|---|---|

1–2 | $3.3\times {10}^{-21}$ | $2.7\times {10}^{-20}$ |

2–4 | $2.2\times {10}^{-22}$ | $1.4\times {10}^{-21}$ |

4–8 | $1.8\times {10}^{-23}$ | $1.0\times {10}^{-22}$ |

8–12 | $1.1\times {10}^{-24}$ | $0.6\times {10}^{-23}$ |

12–20 | $2.7\times {10}^{-25}$ | $1.4\times {10}^{-24}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Beylin, V.; Bezuglov, M.; Kuksa, V.; Tretiakov, E.
Quasielastic Lepton Scattering off Two-Component Dark Matter in Hypercolor Model. *Symmetry* **2020**, *12*, 708.
https://doi.org/10.3390/sym12050708

**AMA Style**

Beylin V, Bezuglov M, Kuksa V, Tretiakov E.
Quasielastic Lepton Scattering off Two-Component Dark Matter in Hypercolor Model. *Symmetry*. 2020; 12(5):708.
https://doi.org/10.3390/sym12050708

**Chicago/Turabian Style**

Beylin, Vitaly, Maxim Bezuglov, Vladimir Kuksa, and Egor Tretiakov.
2020. "Quasielastic Lepton Scattering off Two-Component Dark Matter in Hypercolor Model" *Symmetry* 12, no. 5: 708.
https://doi.org/10.3390/sym12050708