Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism
Abstract
:1. Introduction
2. Spacetime Symmetry as Origin of Mass-Square Differences for Neutrino and Gravito-Electroweak Scale
3. Minimal Length Scale in Annihilation
3.1. Observational Case
3.2. Basic Features of Spinning Electromagnetic Soliton
3.3. Origin of the Minimal Length in Annihilation
4. Conclusions
Funding
Conflicts of Interest
References
- Englert, F.; Brout, R. Broken Symmetries and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 1964, 13, 321. [Google Scholar] [CrossRef] [Green Version]
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964, 13, 508. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, G.S.; Hagen, C.R.; Kibble, T.W.B. Global conservation laws and massless particles. Phys. Rev. Lett. 1964, 13, 585. [Google Scholar] [CrossRef] [Green Version]
- Quigg, C. Gauge Theories of the Strong, Weak and Electromagnetic Interactions; Addison-Wesley Publishing Company: Redwood City, CA, USA, 1983. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields II; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Nishimura, K. Principles for a unified picture of fermions. Prog. Theor. Exp. Phys. 2013, 2013, 023B06. [Google Scholar] [CrossRef]
- Nishimura, K. Higgs-like mechanism for spontaneous spacetime symmetry breaking. Phys. Rev. D 2015, 92, 076010. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.H. Quantization of ratio gravity in Minkowski spacetime and mass generation mechanism. arXiv 2019, arXiv:1901.01845. [Google Scholar]
- Liu, J.C.H.; Wang, Y. Dark Energy from Ratio Gravity. Phys. Rev. D 2018, 98, 084060. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.C.H. A quantum theory of spacetime in spinor formalism and the physical reality of cross-ratio representation: The equation of density parameters of dark energy, matter, and ordinary matter is derived: ΩM2 = 4ΩbΩΛ. ScienceOpen Res. 2016. [Google Scholar] [CrossRef]
- Dymnikova, I. The cosmological term as a source of mass. Class. Quant. Grav. 2002, 19, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Dark Energy and Spacetime Symmetry. Universe 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, G.W. Phantom Matter and the Cosmological Constant; DAMTP-2003-19; Cambridge University: Cambridge, UK, 2003. [Google Scholar]
- Ahluwalia, D.V.; Dymnikova, I. Spacetime as origin of neutrino oscillations. Int. J. Mod. Phys. D 2003, 12, 1787–1794. [Google Scholar]
- Dymnikova, I. Spacetime symmetry and mass of a lepton. J. Phys. A Math. Theor. 2008, 41, 304033. [Google Scholar] [CrossRef]
- Ahluwalia, D.V.; Dymnikova, I. A theoretical case for negative mass-square for sub-ev particles. Int. J. Mod. Phys. D 2003, 12, 1787. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Minimal Length Scale in Annihilation. arXiv 2009, arXiv:0907.0629. [Google Scholar]
- Dymnikova, I.; Sakharov, A.; Ulbricht, J. Appearance of a minimal length in e+e− annihilation. Adv. High Energy Phys. 2014, 2014, 707812. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Spinning superconducting electrovacuum soliton. Phys. Lett. B Part Phys. Nucl. Phys. Cosmol. 2006, 639, 368–372. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Electromagnetic source for the Kerr–Newman geometry. Int. J. Mod. Phys. D 2015, 24, 1550094. [Google Scholar] [CrossRef]
- Dymnikova, I. Origin of the magnetic momentum for regular electrically charged objects described by nonlinear electrodynamics coupled to gravity. Intern. J. Mod. Phys. D 2019, 28, 1950011. [Google Scholar] [CrossRef]
- Ellis, J. Dark Matter and Dark Energy: Summary and Future Directions. Phil. Trans. R. Soc. Lond. 2003, 361, 2607. [Google Scholar] [CrossRef] [Green Version]
- Pakvasa, S.; Valle, J.W. Neutrino Properties Before and After KamLAND. Proc. Indian Natl. Sci. Acad. 2004, 70A, 189–222. [Google Scholar]
- Gürsey, F. Group theoretical concepts and methods in elementary particle physics. In Group Theoretical Concepts and Methods in Elementary Particle Physics: Lectures of the Istanbul Summer School in Theoretical Physics; Gürsey, F., Ed.; Gordon and Breach: New York, NY, USA, 1964. [Google Scholar]
- Montanet, L.; Gieselmann, K.; Barnett, R.M.; Groom, D.E.; Trippe, T.G.; Wohl, C.G.; Armstrong, B.; Wagman, G.S.; Murayama, H.; Stone, J.; et al. Review of particle properties. Phys. Rev. D 1994, 50, 1173–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeffl, W.; Decman, D.J. Anomalous Structure in the Beta Decay of Gaseous Molecular Tritium. Phys. Rev. Lett. 1995, 75, 3237–3240. [Google Scholar] [CrossRef] [PubMed]
- Belesev, A.I.; Bleule, A.I.; Geraskin, E.V.; Golubev, A.A.; Golubev, N.A.; Kazachenko, O.V.; Kiev, E.P.; Kuznetsov, Y.E.; Lobashev, V.M.; Ovchinnikov, B.M.; et al. Results of the Troitsk experiment on the search for the electron antineutrino rest mass in tritium beta-decay. Phys. Lett. B 1995, 350, 263–272. [Google Scholar] [CrossRef]
- Stephenson, G.J., Jr.; Goldman, T. A possible solution to the tritium endpoint problem. Phys. Lett. B 1998, 440, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Weinheimer, C.; Degenddag, B.; Bleile, A.; Bonn, J.; Bornschein, L.; Kazachenko, O.; Kovalik, A.; Otten, E.W. High precision measurement of the tritium b spectrum near its endpoint and upper limit on the neutrino mass. Phys. Lett. B 1999, 460, 219–226. [Google Scholar] [CrossRef]
- Lobashev, V.M.; Aseev, V.N.; Belesev, A.I.; Berlev, A.I.; Geraskin, E.V.; Golubev, A.A.; Kazachenko, O.V.; Kuznetsov, Y.E.; Ostroumov, R.P.; Rivkis, L.A.; et al. Direct search for mass of neutrino and anomaly in the tritium beta-spectrum. Phys. Lett. B 1999, 460, 227–235. [Google Scholar] [CrossRef]
- Ciborowski, J.; Rembielinski, J. Tritium decay and the hypothesis of tachyonic neutrinos. Eur. Phys. J. C 1999, 8, 157–161. [Google Scholar] [CrossRef]
- Ehrlich, R. Implications for the cosmic ray spectrum of a negative electron neutrino (mass)2. Phys. Rev. D 1999, 60, 017302. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, R. Neutrino mass2 inferred from the cosmic ray spectrum and tritium beta decay. Phys. Lett. B 2000, 493, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I. A Possible new dimension at a few TeV. Phys. Lett. B 1990, 246, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Dvali, G.; Smirnov, A.Y. Probing Large Extra Dimensions with Neutrinos. Nucl. Phys. B 1999, 563, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.; Kaloper, N. Infinitely Large New Dimensions. Phys. Rev. Lett. 2000, 84, 586–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourilkov, D. Hint for axial-vector contact interactions in the data on e+e− → e+e−(γ) reaction at center-of-mass energies 192–208 GeV. Phys. Rev. D 2001, 64, R071701. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Amako, K.; Arai, Y.; Fukawa, M.; Fukushima, Y.; Ishihara, N.; Haidt, D.; Kanzaki, J.; Kondo, T.; Matsui, T.; et al. Measurement of the differential cross sections of e+e− → γγ at = 55, 56, 56.5 and 57 GeV and search for unstable photino pair production. Z. Für Phys. C 1989, 45, 175–191. [Google Scholar]
- Shimozawa, K.; Fujimoto, J.; Abe, T.; Adachi, I.; Doser, M.; Enomoto, R.; Fujii, H.; Fujii, K.; Fujii, T.; Fujio, N.; et al. Studies of e+e− → γγ and e+e− → γγ(γ) reactions. Phys. Lett. B 1992, 284, 144–150. [Google Scholar] [CrossRef]
- The ALEPH Collaboration. Searches for new particles in Z decays using the ALEPH detector. Phys. Rep. 1992, 216, 253–340. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Adam, W.; Adye, T.; Agasi, E.; Ajinenko, I.; Aleksan, R.; Alekseev, G.D.; Allport, P.P.; Almehed, S.; Almeida, F.M.L.; et al. Measurement of the e+e− → γγ(γ). Phys. Lett. B 1994, 327, 386–396. [Google Scholar] [CrossRef] [Green Version]
- The DELPHI Collaboration. Measurement of the e+e− → γγ(γ). Phys. Lett. B 1998, 433, 429–444. [Google Scholar]
- Abreu, P.; Adam, W.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; et al. Determination of the e+e− → γγ(γ) cross-section at centre-of-mass energies ranging from 189 GeV to 202 GeV. Phys. Lett. B 2000, 491, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Achard, P.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, V.P.; et al. Study of multiphoton final states and test of QED in e+e− collisions at up to 209 GeV. Phys. Lett. B 2002, 531, 28–38. [Google Scholar] [CrossRef]
- Akwawy, M.Z.; Alexander, G.; Allison, J.; Allport, P.P.; Anderson, K.J.; Armitage, J.C.; Arnison, G.T.J.; Ashton, P.; Azuelos, G.; Baines, J.T.M.; et al. Measurement of the cross sections of the reactions e+e− → γγ and e+e− → γγ(γ). Phys. Lett. B 1991, 275, 531. [Google Scholar] [CrossRef] [Green Version]
- Abbiendi, G.; Ainsley, C.; Åkesson, P.F.; Alexander, G.; Allison, J.; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; et al. Multiphotom production in e+e− collisions at = 181–209 GeV. Eur. Phys. J. C 2003, 26, 331–344. [Google Scholar] [CrossRef]
- Burch, U.; Lin, C.-H.; Rubbia, A.; Sakharov, A.S.; Ulbricht, J.; Wu, J.; Zhao, J. Test of non point-like behavior of fermions. In Proceedings of the AIP 7th Conference on Quark Confinement and the Hadron Spectrum; American Institute of Physics: College Park, MD, USA, 2007; Volume 892, pp. 468–471. [Google Scholar]
- Litke, A.M. Master’s Thesis, Harvard University, Cambridge, MA, USA, 1970.
- Drell, S.D. Quantum electrodynamics at small distances. Ann. Phys. 1958, 4, 75. [Google Scholar] [CrossRef]
- Low, F.E. Heavy electrons and muons. Phys. Rev. Lett. 1965, 14, 238–239. [Google Scholar] [CrossRef]
- Eboli, O.J.P. Bounds on effective interactions from the reaction e+e− → γγ at LEP. Phys. Lett. B 1991, 271, 274–276. [Google Scholar] [CrossRef]
- Mery, P.; Perrottet, M.; Renard, F.M. Anomalous effects in e+e− annihilation into bosons pairs II. e+e− → ZZ,γZ, γγ. Z. Für Phys. C 1988, 38, 579–591. [Google Scholar] [CrossRef]
- Stanley Brodsky, J.; Drell, S.D. Anomalous magnetic moment and limits on fermion sybstructure. Phys. Rev. D 1980, 22, 2236–2243. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. An extensible model of the electron. Proc. R. Soc. Lond. A 1962, 268, 57–67. [Google Scholar]
- Burinskii, A. Gravitating Lepton Bag Model. J. Exp. Theor. Phys. 2015, 121, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Burinskii, A. Weakness of gravity as illusion which hides true path to unification of gravity with particle physics. Int. J. Mod. Phys. D 2017, 26, 1743022. [Google Scholar] [CrossRef] [Green Version]
- Pope, T.; Hofer, W. Spin in the extended electron model. Front. Phys. 2017, 12, 128503. [Google Scholar] [CrossRef] [Green Version]
- Pope, T.; Hofer, W. An Extended Electron Approach to the General Many-Body Problem. arXiv 2018, arXiv:1801.06242. [Google Scholar]
- Dymnikova, I.; Galaktionov, E. Regular rotating electrically charged black holes and solitons in nonlinear electrodynamics minimally coupled to gravity. Class. Quant. Grav. 2015, 32, 165015. [Google Scholar] [CrossRef]
- Dymnikova, I.; Galaktionov, E. Basic Generic Properties of Regular Rotating Black Holes and Solitons. Adv. Math. Phys. 2017, 2017, 1035381. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Galaktionov, E. Dynamics of Electromagnetic Fields and Structure of Regular Rotating Electrically Charged Black Holes and Solitons in Nonlinear Electrodynamics Minimally Coupled to Gravity. Universe 2019, 5, 205. [Google Scholar] [CrossRef] [Green Version]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lond. A 1934, 144, 425. [Google Scholar] [CrossRef]
- Fradkin, E.S.; Tseytlin, A.A. Nonlinear electrodynamics from quantized strings. Phys. Lett. B Part. Phys. Nucl. Phys. Cosmol. 1985, 163, 123–130. [Google Scholar]
- Tseytlin, A.A. Vector field effective action in the open superstring theory. Nucl. Phys. B Theor. Phenomenol. Exp. High Energy Phys. Quantum Field Theory Stat. Syst. 1986, 276, 391–428. [Google Scholar] [CrossRef]
- Siberg, N.; Witten, E. String theory and noncommutative geometry. J. High Energy Phys. 1999, 1999, 032. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. Regular electrically charged vacuum structures with de Sitter centre in nonlinear electrodynamics coupled to general relativity. Class. Quantum Grav. 2004, 21, 4417–4428. [Google Scholar] [CrossRef]
- Coleman, S. Classical lumps and their quantum descendants. In New Phenomena in Subnuclear Physics; Zichichi, A., Ed.; Plenum Press: New York, NY, USA, 1977; p. 297. [Google Scholar]
- Dymnikova, I.; Galaktionov, E.; Tropp, E. Existence of electrically charged structures with regular center in nonlinear electrodynamics minimally coupled to gravity. Adv. Math. Phys. 2015, 2015, 496475. [Google Scholar] [CrossRef]
- Gürses, M.; Gürsey, F. Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 1975, 16, 2385–2390. [Google Scholar] [CrossRef] [Green Version]
- Newman, E.T.; Janis, A.J. Note on the Kerr Spinning Particle Metric. J. Math. Phys. 1965, 6, 915–917. [Google Scholar] [CrossRef]
- Newman, E.T.; Cough, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating charged mass. J. Math. Phys. 1965, 6, 918–919. [Google Scholar] [CrossRef]
- Carter, B. Clobal structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559–1571. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Clarendon Press: New York, NY, USA, 1983. [Google Scholar]
- Israel, W. Source of the Kerr metric. Phys. Rev. D 1970, 2, 641–646. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continued Media; Pergamon Press: Oxford, UK, 1993. [Google Scholar]
- Dymnikova, I.; Dobosz, A.; Sołtysek, B. Lemaître Class Dark Energy Model for Relaxing Cosmological Constant. Universe 2017, 3, 39. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I.; Dobosz, A. Spacetime Symmetry and Lemaître Class Dark Energy Models. Symmetry 2019, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Dymnikova, I. De Sitter-Schwarzschild black hole: Its particlelike core and thermodynamical properties. Int. J. Mod. Phys. D 1996, 5, 529–540. [Google Scholar] [CrossRef]
- Dymnikova, I. The algebraic structure of a cosmological term in spherically symmetric solutions. Phys. Lett. B 2000, 472, 33–38. [Google Scholar] [CrossRef] [Green Version]
1. | Description of both these stages in the Universe evolution in the frame of a single self-consistent theoretical scheme is possible by introducing a cosmological term with the reduced symmetry, which represents the time-dependent and spatially inhomogeneous vacuum dark energy. Relaxation of the cosmological constant from the initial big value to the presently observed value can be described in general setting by the spherically symmetric cosmology of the Lemaître class ([76,77] and references therein). |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymnikova, I. Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism. Symmetry 2020, 12, 634. https://doi.org/10.3390/sym12040634
Dymnikova I. Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism. Symmetry. 2020; 12(4):634. https://doi.org/10.3390/sym12040634
Chicago/Turabian StyleDymnikova, Irina. 2020. "Mass, Spacetime Symmetry, de Sitter Vacuum, and the Higgs Mechanism" Symmetry 12, no. 4: 634. https://doi.org/10.3390/sym12040634