Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions
Abstract
:1. Introduction
- The sumis-differentiable on J with
- For any constant, the functionis-differentiable and
- The functionis-differentiable with
- for
2. Main Results
3. Applications to Special Means
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ernst, T. q-Calculus and physics. In A Comprehensive Treatment of q—Calculus; Birkhäuser: Basel, Switzerland, 2012; pp. 441–446. [Google Scholar]
- Niculescu, C.P. An invitation to convex function theory. In Order Structures in Functional Analysis; Editura Academiei Romane: Bucarest, Romania, 2001. [Google Scholar]
- Bennett, C.; Sharpley, R. Interpolation of Operators; Academic Press: Boston, MA, USA, 1998. [Google Scholar]
- Mititelu, Ş.; Trenţă, S. Efficiency conditions in vector control problems governed by multiple integrals. J. Appl. Math. Comp. 2018, 57, 647–665. [Google Scholar] [CrossRef]
- Trenţă, S. On a New Class of Vector Variational Control Problems. Numer. Funct. Anal. Optimi. 2018, 39, 1594–1603. [Google Scholar] [CrossRef]
- Trenţă, S. KT-geodesic pseudoinvex control problems governed by multiple integrals. J. Nonlin. Conv. Anal. 2019, 20, 73–84. [Google Scholar]
- Ben-Israel, A.; Mond, B. What is invexity? J. Austral. Math. Soc. Ser. B 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hernández Hernández, J.E. On Some New Integral Inequalities Related with the Hermite-Hadamard Inequality via h-Convex Functions. MAYFEB J. Math. 2017, 4, 1–12. [Google Scholar]
- Hernández Hernández, J.E. On log-(m,h1,h2)-convex functionsand related integral inequalities. Int. J. Open Prob. Compt. Math. 2019, 12, 43–59. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Inequalities for Functions and Their Integrals and Derivatives; Kluwer Academic: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard Inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Noor, M.A.; Cristescu, G.; Awan, M.U. Bounds having Riemann type quantum integrals via strongly convex functions. Studia Sci. Math. Hung. 2017, 54, 221–240. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Bozkurt, H.; Alp, N. On Hermite–Hadamard type integral inequalities for preinvex and log-preinvex functions. Contemp. Anal. Appl. Math. 2013, 1, 237–252. [Google Scholar]
- Vivas-Cortez, M.J.; García, C.; Hernández Hernández, J.E. Ostrowski-Type Inequalities for Functions Whose Derivative Modulus is Relatively (m,h1,h2)-Convex. Appl. Math. Inf. Sci. 2019, 13, 369–378. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, İ. q—Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud-Univ. -Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum calculus, Universitext; Springer: New York, NY, USA, 2002. [Google Scholar]
- Kunt, M.; Kashuri, A.; Du, T. Quantum Montgomery identity and some quantum integral inequalities. arXiv 2019, arXiv:1907.03601. [Google Scholar]
- Mohsin, B.B.; Awan, M.U.; Noor, M.A.; Riahi, L.; Noor, K.I.; Almutairi, B. New quantum Hermite—Hadamard inequalities utilizing harmonic convexity of the functions. IEEE Access 2019, 7, 20479–20483. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite—Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2013, 9, 781–793. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Liko, R.; Kashuri, A.; Hernández Hernández, J.E. New quantum estimates of trapezium–type inequalities for generalized ϕ-convex functions. Mathematics 2019, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum estimates of Ostrowski inequalities for generalized ϕ-convex functions. Symmetry 2019, 11, 1–16. [Google Scholar]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Some inequalities using generalized convex functions in quantum analysis. Symmetry 2019, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández, J.E. Quantum Trapezium-Type Inequalities Using Generalized ϕ-Convex Functions. Axioms 2020, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via (α,m)-convexity. J. Inequal. Appl. 2018, 2018, 1–20. [Google Scholar] [CrossRef]
- Ujević, N. An application of the Montgomery identity to quadrature rukles. Rend. Sem. Mat. Univ. Pol. Torino 2008, 66, 137–143. [Google Scholar]
- Yang, X.M.; Li, D. On Properties of Preinvex Functions. J. Math. Anal. Appl. 2001, 256, 229–241. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Kashuri, A.; Liko, R.; Hernández, J.E.H. Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions. Symmetry 2020, 12, 553. https://doi.org/10.3390/sym12040553
Vivas-Cortez M, Kashuri A, Liko R, Hernández JEH. Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions. Symmetry. 2020; 12(4):553. https://doi.org/10.3390/sym12040553
Chicago/Turabian StyleVivas-Cortez, Miguel, Artion Kashuri, Rozana Liko, and Jorge E. Hernández Hernández. 2020. "Some New q—Integral Inequalities Using Generalized Quantum Montgomery Identity via Preinvex Functions" Symmetry 12, no. 4: 553. https://doi.org/10.3390/sym12040553