Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity
Abstract
1. Introduction
2. The Gauss–Bonnet Gravity in Spherical Symmetry
Spherical Symmetry
3. The Noether Symmetry Approach
4. Noether Symmetries in Gauss–Bonnet Gravity
- Case 2: in dimensions, there is also the possibility of having a linear model of the form . Its Noether symmetry reads
Spherically Symmetric Solutions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perivolaropoulos, L. Six Puzzles for LCDM Cosmology. arXiv 2008, arXiv:0811.4684. [Google Scholar]
- Bull, P.; Akrami, Y.; Adamek, J.; Baker, T.; Bellini, E.; Jimenez, J.B. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Univ. 2016, 12, 56. [Google Scholar] [CrossRef]
- Barack, L.; Cardoso, V.; Nissanke, S.; Sotiriou, T.P.; Askar, A.; Belczynski, C. Black holes, gravitational waves and fundamental physics: A roadmap. arXiv 2018, arXiv:1806.05195. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1972. [Google Scholar]
- Capozziello, S.; Laurentis, M.D. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483. [Google Scholar] [CrossRef]
- Capozziello, S.; Laurentis, M.D.; Faraoni, V. A Bird’s eye view of f(R)-gravity. Open Astron. J. 2010, 3, 49. [Google Scholar] [CrossRef]
- Anh, K.N.; Van, K.P.; Hong, V.N.T. Testing the f(R)-theory of gravity. Commun. Phys. 2019, 29, 35. [Google Scholar]
- Anh, K.N.; Van, K.P.; Hong, V.N.T. Perturbative solutions of the f(R)-theory of gravity in a central gravitational field and some applications. Eur. Phys. J. C 2018, 78, 539. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 1961, 124, 925. [Google Scholar] [CrossRef]
- Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 1974, 10, 363–384. [Google Scholar] [CrossRef]
- Deffayet, C.; Esposito-Farese, G.; Vikman, A. Covariant Galileon. Phys. Rev. D 2009, 79, 084003. [Google Scholar] [CrossRef]
- Capozziello, S.; Dialektopoulos, K.F.; Sushkov, S.V. Classification of the Horndeski cosmologies via Noether Symmetries. Eur. Phys. J. C 2018, 78, 447. [Google Scholar] [CrossRef]
- Hassan, S.F.; Rosen, R.A. Bimetric Gravity from Ghost-free Massive Gravity. JHEP 2012, 1202, 126. [Google Scholar] [CrossRef]
- De Rham, C.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef]
- Deser, S.; Woodard, R.P. Nonlocal Cosmology. Phys. Rev. Lett. 2007, 99, 111301. [Google Scholar] [CrossRef]
- Modesto, L.; Rachwal, L. Nonlocal quantum gravity: A review. Int. J. Mod. Phys. D 2017, 26, 1730020. [Google Scholar] [CrossRef]
- Ikeda, S.; Saridakis, E.N.; Stavrinos, P.C.; Triantafyllopoulos, A. Cosmology of Lorentz fiber-bundle induced scalar-tensor theories. Phys. Rev. D 2019, 100, 124035. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Cai, Y.F.; Capozziello, S.; Laurentis, M.D.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498. [Google Scholar] [CrossRef]
- Gasperini, M.; Veneziano, G. Pre - big bang in string cosmology. Astropart. Phys. 1993, 1, 317. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified Gauss–Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 2005, 631, 1. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. Construction of cosmologically viable f(G) dark energy models. Phys. Lett. B 2009, 675, 1. [Google Scholar] [CrossRef]
- Uddin, K.; Lidsey, J.E.; Tavakol, R. Cosmological scaling solutions in generalised Gauss–Bonnet gravity theories. Gen. Relat. Grav. 2009, 41, 2725. [Google Scholar] [CrossRef]
- Felice, A.D.; Mota, D.F.; Tsujikawa, S. Matter instabilities in general Gauss–Bonnet gravity. Phys. Rev. D 2010, 81, 023532. [Google Scholar] [CrossRef]
- Davis, S.C. Solar system constraints on f(G) dark energy. arXiv 2007, arXiv:0709.4453. [Google Scholar]
- Chakraborty, S.; SenGupta, S. Spherically symmetric brane in a bulk of f(R) and Gauss–Bonnet gravity. Class. Quant. Grav. 2016, 33, 225001. [Google Scholar] [CrossRef]
- De Boer, J.; Kulaxizi, M.; Parnachev, A. AdS(7)/CFT(6), Gauss–Bonnet Gravity, and Viscosity Bound. JHEP 2010, 1003, 087. [Google Scholar] [CrossRef]
- Astashenok, A.V.; Odintsov, S.D.; Oikonomou, V.K. Modified Gauss - Bonnet gravity with the Lagrange multiplier constraint as mimetic theory. Class. Quant. Grav. 2015, 32, 185007. [Google Scholar] [CrossRef]
- Laurentis, M.D.; Lopez-Revelles, A.J. Newtonian, Post Newtonian and Parameterized Post Newtonian limits of f(R,G) gravity. Int. J. Geom. Meth. Mod. Phys. 2014, 11, 1450082. [Google Scholar] [CrossRef]
- Rubakov, V.A.; Shaposhnikov, M.E. Do We Live Inside a Domain Wall? Phys. Lett. 1983, 125B, 136. [Google Scholar] [CrossRef]
- Antoniadis, I. A Possible new dimension at a few TeV. Phys. Lett. B 1990, 246, 377. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G.R. The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 1998, 429, 263. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Capozziello, S. Noether Symmetries as a geometric criterion to select theories of gravity. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1840007. [Google Scholar] [CrossRef]
- Capozziello, S.; Ritis, R.D.; Rubano, C.; Scudellaro, P. Noether symmetries in cosmology. Riv. Nuovo Cim. 1996, 19, 1–114. [Google Scholar] [CrossRef]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef]
- Basilakos, S.; Capozziello, S.; Laurentis, M.D.; Paliathanasis, A.; Tsamparlis, M. Noether symmetries and analytical solutions in f(T)-cosmology: A complete study. Phys. Rev. D 2013, 88, 103526. [Google Scholar] [CrossRef]
- Bahamonde, S.; Capozziello, S. Noether Symmetry Approach in f(T,B) teleparallel cosmology. Eur. Phys. J. C 2017, 77, 107. [Google Scholar] [CrossRef] [PubMed]
- Capozziello, S.; Laurentis, M.D.; Dialektopoulos, K.F. Noether symmetries in Gauss–Bonnet-teleparallel cosmology. Eur. Phys. J. C 2016, 76, 629. [Google Scholar] [CrossRef] [PubMed]
- Bahamonde, S.; Capozziello, S.; Dialektopoulos, K.F. Constraining Generalized Non-local Cosmology from Noether Symmetries. Eur. Phys. J. C 2017, 77, 722. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamaguchi, M.; Yokoyama, J. Generalized G-inflation: Inflation with the most general second-order field equations. Prog. Theor. Phys. 2011, 126, 511. [Google Scholar] [CrossRef]
- Ray, S. Birkhoff’s theorem in Lovelock gravity for general base manifolds. Class. Quant. Grav. 2015, 32, 195022. [Google Scholar] [CrossRef]
- Zegers, R. Birkhoff’s theorem in Lovelock gravity. J. Math. Phys. 2005, 46, 072502. [Google Scholar] [CrossRef]
- Dotti, G.; Oliva, J.; Troncoso, R. Static solutions with nontrivial boundaries for the Einstein-Gauss–Bonnet theory in vacuum. Phys. Rev. D 2010, 82, 024002. [Google Scholar] [CrossRef]
- Bogdanos, C. Extensions of Birkhoff’s theorem in 6D Gauss–Bonnet gravity. AIP Conf. Proc. 2010, 1241, 521. [Google Scholar]
- Bogdanos, C.; Charmousis, C.; Gouteraux, B.; Zegers, R. Einstein-Gauss–Bonnet metrics: Black holes, black strings and a staticity theorem. JHEP 2009, 0910, 037. [Google Scholar] [CrossRef]
- Deppe, N.; Leonard, C.D.; Taves, T.; Kunstatter, G.; Mann, R.B. Critical Collapse in Einstein-Gauss–Bonnet Gravity in Five and Six Dimensions. Phys. Rev. D 2012, 86, 104011. [Google Scholar] [CrossRef]
- Capozziello, S.; Stabile, A.; Troisi, A. Spherically symmetric solutions in f(R)-gravity via Noether Symmetry Approach. Class. Quant. Grav. 2007, 24, 2153. [Google Scholar] [CrossRef]
- Charmousis, C.; Dufaux, J.F. General Gauss–Bonnet brane cosmology. Class. Quant. Grav. 2002, 19, 4671. [Google Scholar] [CrossRef]
P(r)2 | Q(r)2 | d | n |
---|---|---|---|
1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajardi, F.; Dialektopoulos, K.F.; Capozziello, S. Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity. Symmetry 2020, 12, 372. https://doi.org/10.3390/sym12030372
Bajardi F, Dialektopoulos KF, Capozziello S. Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity. Symmetry. 2020; 12(3):372. https://doi.org/10.3390/sym12030372
Chicago/Turabian StyleBajardi, Francesco, Konstantinos F. Dialektopoulos, and Salvatore Capozziello. 2020. "Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity" Symmetry 12, no. 3: 372. https://doi.org/10.3390/sym12030372
APA StyleBajardi, F., Dialektopoulos, K. F., & Capozziello, S. (2020). Higher Dimensional Static and Spherically Symmetric Solutions in Extended Gauss–Bonnet Gravity. Symmetry, 12(3), 372. https://doi.org/10.3390/sym12030372