A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov Processes through Daniels-Type Boundaries
Abstract
:1. Introduction
2. Essentials on Gauss-Markov Processes and FET
- (i)
- ,
- (ii)
- , .
Closed-Forms Results
3. Symmetry Properties
Transition Distribution Function in a Two-Sided Region
- (i)
- ;
- (ii)
4. Characterization of the Transition Density in a Two-Sided Region
4.1. Proof of Theorem 1
- (i)
- for (), ;
- (ii)
- , , ;
- (iii)
- satisfies the delta condition , i.e.,
5. Pdf of FET
6. Two Specific Examples
6.1. The Wiener Process
6.2. The Ornstein-Uhlenbeck Process
Funding
Conflicts of Interest
References
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; ISBN 978-0-262-18253-9. [Google Scholar]
- Mehr, C.B.; McFadden, J.A. Certain properties of gaussian processes and their first passage time. J. R. Statist. Soc. 1965, 27, 505–522. [Google Scholar] [CrossRef]
- Adler, R.J. An introduction to continuity, extrema, and related topics for general Gaussian processes. Lecture Notes-Monograph Series. Inst. Math. Stat. 1990, 12, 1–155. [Google Scholar]
- Janssen, J.; Manca, O.; Manca, R. Applied Diffusion Processes from Engineering to Finance; Wiley: Hoboken, NJ, USA, 2013; 416p. [Google Scholar]
- Ricciardi, L.M.; Di Crescenzo, A.; Giorno, V.; Nobile, A.G. An outline of theoretical and algorithmic approaches to first passage time problems with applications to biological modeling. Math. Jpn. 1999, 50, 247–322. [Google Scholar]
- Tuckwell, H.C. On the First-Exit Time Problem for Temporally Homogeneous Markov Processes. J. Appl. Probab. 1976, 13, 39–48. [Google Scholar] [CrossRef]
- Giorno, V.; Nobile, A.G. On the Construction of a Special Class of Time-Inhomogeneous Diffusion Processes. J. Stat. Phys. 2019, 177, 299–323. [Google Scholar] [CrossRef]
- Pirozzi, E. Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing. Biol. Cybern. 2018, 112, 25–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ascione, G.; Pirozzi, E. On a stochastic neuronal model integrating correlated inputs. Math. Biosci. Eng. 2019, 16, 5206–5225. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, G.; Lansky, P.; Pirozzi, E. On two diffusion neuronal models with multiplicative noise: The mean first-passage time properties. Chaos 2018, 28, 043103. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, G.; Macci, C.; Pirozzi, E. Asymptotic Results for First-Passage Times of Some Exponential Processes. Methodol. Comput. Appl. Probab. 2018, 20, 1453–1476. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Giorno, V.; Krishna Kumar, B.; Nobile, A.G. A double-ended queue with catastrophes and repairs, and a jump-diffusion approximation. Methodol. Comput. Appl. Probab. 2012, 14, 937–954. [Google Scholar] [CrossRef] [Green Version]
- Di Crescenzo, A.; Giorno, V.; Krishna Kumar, B.; Nobile, A.G. A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation. Mathematics 2018, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Di Nardo, E.; Nobile, A.; Pirozzi, E.; Ricciardi, L. A computational approach to first-passage-time problems for Gauss—Markov processes. Adv. Appl. Probab. 2001, 33, 453–482. [Google Scholar] [CrossRef]
- Buonocore, A.; Caputo, L.; Pirozzi, E.; Carfora, M.F. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Math. Biosci. Eng. 2014, 11, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonocore, A.; Caputo, L.; D’Onofrio, G.; Pirozzi, E. Closed-form solutions for the first-passage-time problem and neuronal modeling. Ricerche di Matematica 2015, 64, 421–439. [Google Scholar] [CrossRef] [Green Version]
- Buonocore, A.; Caputo, L.; Pirozzi, E.; Ricciardi, L.M. The First Passage Time Problem for Gauss-Diffusion Processes: Algorithmic Approaches and Applications to LIF Neuronal Model. Methodol. Comput. Appl. Probab. 2011, 13, 29–57. [Google Scholar] [CrossRef] [Green Version]
- Lerche, H.R. Boundary Crossing of Brownian Motion: Its Relation to the Law of the Iterated Logarithm and to Sequential Analysis; Springer: Berlin, Germany, 1986; Volume 40. [Google Scholar]
- Durbin, J. The first-passage density of a continuous Gaussian process to a general boundary. J. Appl. Probab. 1985, 22, 99–122. [Google Scholar] [CrossRef]
- Daniels, H.E. The first crossing-time density for Brownian motion with a perturbed linear boundary. Bernoulli 2000, 6, 571–580. [Google Scholar] [CrossRef]
- Giorno, V.; Nobile, A.G.; Ricciardi, L.M. On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Probab. 1990, 22, 883–914. [Google Scholar] [CrossRef]
- Alili, L.; Patie, P. On the first crossing times of a Brownian motion and a family of continuous curves. Comptes Rendus Math. 2005, 340, 225–228. [Google Scholar] [CrossRef]
- Nobile, A.G.; Pirozzi, E.; Ricciardi, L.M. On The Two-Boundary First-Passage Time For a Class of Markov Processes. Sci. Math. Jpn. 2006, 64, 421–442. [Google Scholar]
- Nobile, A.G.; Pirozzi, E.; Ricciardi, L.M. Asymptotics and Evaluations of FPT Densities Through Varying Boundaries For Gauss-Markov Processes. Sci. Math. Jpn. 2008, 67, 241–266. [Google Scholar]
- Daniels, H.E. Approximating the first crossing time density for a curved boundary. Bernoulli 1996, 2, 133–143. [Google Scholar] [CrossRef]
- Buonocore, A.; Nobile, A.G.; Ricciardi, L.M. A New Integral Equation for the Evaluation of First-Passage-Time Probability Densities. Adv. Appl. Probab. 1987, 19, 784–800. [Google Scholar] [CrossRef]
- Giorno, V.; Nobile, A.G.; Ricciardi, L.M. A symmetry-based constructive approach to probability densities for one-dimensional diffusion processes. J. Appl. Prob. 1989, 27, 707–721. [Google Scholar] [CrossRef]
- Di Crescenzo, A.; Giorno, V.; Nobile, A.G.; Ricciardi, L.M. On first-passage-time and transition densities for strongly symmetric diffusion processes. Nagoya Math. J. 1997, 145, 143–161. [Google Scholar] [CrossRef] [Green Version]
- Abundo, M. One-dimensional reflected diffusions with two boundaries and an inverse first-hitting problem. Stoch. Anal. Appl. 2014, 32, 975–991. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, L.; Hieber, P.; Scherer, M. Double-barrier first-passage times of jump-diffusion processes. Monte Carlo Methods Appl. 2013, 19, 107–141. [Google Scholar]
- Fleming, W.H.; James, M.R. Asymptotic Series and Exit Time Probabilities. Ann. Probab. 1992, 20, 1369–1384. [Google Scholar] [CrossRef]
- Hieber, P.; Scherer, M. A note on first-passage times of continuously time-changed Brownian motion. Stat. Probab. Lett. 2012, 82, 165–172. [Google Scholar] [CrossRef]
- Patie, P. Two-sided exit problem for a Spectrally Negative α-Stable Ornstein-Uhlenbeck Process and the Wright’s generalized hypergeometric functions. Electron. Commun. Probab. 2007, 12, 146–160. [Google Scholar] [CrossRef]
- Buonocore, A.; Giorno, V.; Nobile, A.G.; Ricciardi, L.M. On two-boundary first-crossing-time problem for diffusion processes. J. Appl. Prob. 1990, 27, 102–114. [Google Scholar] [CrossRef]
- Sacerdote, L.; Telve, O.; Zucca, C. Joint densities of first passage times of a diffusion process through two constant boundaries. J. Adv. Appl. Probab. 2013, 4, 186–202. [Google Scholar]
- Sacerdote, L.; Tamborrino, M.; Zucca, C. First passage times for two-dimensional correlated diffusion processes: Analytical and numerical methods. J. Comput. Appl. Math. 2016, 296, 275–292. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Pirozzi, E. Asymptotics of Two-boundary First-exit-time Densities for Gauss-Markov Processes. Methodol. Comput. Appl. Probab. 2019, 21, 735–752. [Google Scholar] [CrossRef]
- Sweet, A.L.; Hardin, J.C. Solutions for Some Diffusion Processes with Two Barriers. J. Appl. Probab. 1970, 7, 423–431. [Google Scholar] [CrossRef]
- D’Onofrio, G.; Pirozzi, E. On two-boundary first exit time of Gauss-diffusion processes: Closed-form results and biological modeling. Seminario Interdisciplinare di Matematica 2015, 12, 111–124. [Google Scholar]
- D’Onofrio, G.; Pirozzi, E. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics. J. Math. Biol. 2017, 74, 1511–1531. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirozzi, E. A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov Processes through Daniels-Type Boundaries. Symmetry 2020, 12, 279. https://doi.org/10.3390/sym12020279
Pirozzi E. A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov Processes through Daniels-Type Boundaries. Symmetry. 2020; 12(2):279. https://doi.org/10.3390/sym12020279
Chicago/Turabian StylePirozzi, Enrica. 2020. "A Symmetry-Based Approach for First-Passage-Times of Gauss-Markov Processes through Daniels-Type Boundaries" Symmetry 12, no. 2: 279. https://doi.org/10.3390/sym12020279