On Some New Jungck–Fisher–Wardowski Type Fixed Point Results
Abstract
:1. Introduction and Preliminaries
- is strictly increasing, i.e., for all , if then ;
- For each sequence , if and only if ;
- There exists such that .
- (1)
- , or
- (2)
- .
- satisfies (F1) and (T);
- for all ;
- for all such that .
2. Results
Author Contributions
Funding
Conflicts of Interest
References
- Jungck, G. Commuting maps and fixed points. Am. Math. Mon. 1976, 83, 261–263. [Google Scholar] [CrossRef]
- Fisher, B. Four mappings with a common fixed point. Arab. Summ. J. Univ. Kuwait Sci. 1981, 8, 131–139. [Google Scholar]
- Banach, S. Sur les opérations dans les ensambles abstrait et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Cosentino, M.; Vetro, P. Fixed point result for F-contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Dey, L.K.; Kumam, P.; Senapati, T. Fixed point results concerning α-F-contraction mappings in metric spaces. Appl. Gen. Topol. 2019, 20, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Fulga, A.; Agarwal, R. A survey: F-contractions with related fixed point results. Fixed Point Theory Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 210. [Google Scholar] [CrossRef] [Green Version]
- Popescu, O.; Stan, G. Two fixed point theorems concerning F-contraction in complete metric spaces. Symmetry 2020, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Vetro, F.; Vujaković, J. An alternative and easy approach to fixed point results via simulation functions. Demonstr. Math. 2017, 5, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Radenović, S.; Chandock, S. Simulation type functions and coincidence points. Filomat 2018, 32, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 1977, 226, 257–290. [Google Scholar] [CrossRef]
- Secelean, N.A. Iterated function system consisting of F-contractions. Fixed Point Theory Appl. 2013, 2013, 277. [Google Scholar] [CrossRef] [Green Version]
- Vujaković, J.; Radenović, S. On some F-contraction of Piri-Kumam-Dung type mappings in metric spaces. Vojnotehnički Glasnik 2020, 68, 697–714. [Google Scholar] [CrossRef]
- Vujaković, J.; Mitrović, S.; Pavlović, M.; Radenović, S. On recent results concerning F- contraction in generalized metric spaces. Mathematics 2020, 8, 767. [Google Scholar] [CrossRef]
- Wardowski, D.; Van Dung, N. Fixed points of F- weak contractions on complete metric spaces. Demonstr. Math. 2014, 47, 146–155. [Google Scholar] [CrossRef]
- Wardowski, D. Solving existence problems via F- contractions. Proc. Am. Math. Soc. 2018, 146, 1585–1598. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Proinov, P.D. Fixed point theorems for generalized contractive mappings in metric spaces. J. Fixed Point Theory Appl. 2020, 22, 1. [Google Scholar] [CrossRef]
- Proinov, P.D. A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. 2007, 67, 2361–2369. [Google Scholar] [CrossRef]
- Lukács, A.; Kajánto, S. Fixed point theorems for various types of F-contractions in complete b-metric spaces. Fixed Point Theory 2018, 19, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Skoff, F. Teoremi di punto fisso per applicazioni negli spazi metrici. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1977, 111, 323–329. [Google Scholar]
- Bianchini, R.M.; Grandolfi, M. Transformazioni di tipo contracttivo generalizzato in uno spazio metrico. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1968, 45, 212–216. [Google Scholar]
- Aljančić, S. Uvod u Realnu i Funkcionalnu Analizu; Naučna Knjiga: Beograd, Srbija, 1969. [Google Scholar]
- Turinci, M. Wardowski implicit contractions in metric spaces. arXiv 2013, arXiv:1211.3164v2. [Google Scholar]
- Roldán-López-de-Hiero, A.F.; Karapinar, E.; Roldán-Lopéz-de-Hiero, C.; Martínez-Moreno, J. Coincidence point theorems on metric spaces via simulation functions. J. Comput. Appl. Math. 2015, 275, 345–355. [Google Scholar] [CrossRef]
- Abbas, M.; Jungck, G. Common fixed point results for non-commuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl. 2008, 341, 416–420. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003. [Google Scholar]
- Collaco, P.; Silva, J.C. A complete comparison of 23 contraction conditions. Nonlinear Anal. TMA 1997, 30, 471–476. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Willey and Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Kirk, W.A.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Hussain, N.; Mitrović, Z.D.; Radenović, S. A common fixed point theorem of Fisher in b-metric spaces. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2018, 113, 949–956. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujaković, J.; Ljajko, E.; Radojević, S.; Radenović, S. On Some New Jungck–Fisher–Wardowski Type Fixed Point Results. Symmetry 2020, 12, 2048. https://doi.org/10.3390/sym12122048
Vujaković J, Ljajko E, Radojević S, Radenović S. On Some New Jungck–Fisher–Wardowski Type Fixed Point Results. Symmetry. 2020; 12(12):2048. https://doi.org/10.3390/sym12122048
Chicago/Turabian StyleVujaković, Jelena, Eugen Ljajko, Slobodan Radojević, and Stojan Radenović. 2020. "On Some New Jungck–Fisher–Wardowski Type Fixed Point Results" Symmetry 12, no. 12: 2048. https://doi.org/10.3390/sym12122048