# On the Difference of Inverse Coefficients of Univalent Functions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Definitions

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

**Definition**

**7.**

**Definition**

**8.**

## 3. Preliminary Lemmas

**Lemma**

**1.**

**Lemma**

**2.**

## 4. Inverse Coefficient Differences for $\mathcal{S}$

**Theorem**

**1.**

**Proof.**

## 5. Inverse Coefficient Differences for Subclasses of $\mathcal{S}$

**Proposition**

**1.**

**Proof.**

**Remark**

**1.**

**Theorem**

**2.**

**Proof.**

**Theorem**

**3.**

**Theorem**

**4.**

**Proof.**

**Theorem**

**5.**

**Theorem**

**6.**

**Theorem**

**7.**

**Proof.**

**Theorem**

**8.**

**Proof.**

## 6. Finding Extreme Functions

**Remark**

**2.**

**Remark**

**3.**

**Remark**

**4.**

## Author Contributions

## Funding

## Conflicts of Interest

## References

- De Branges, L. A proof of the Bieberbach conjecture. Acta Math.
**1985**, 154, 137–152. [Google Scholar] [CrossRef] - Duren, P.L. Univalent Functions; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Hayman, W.K. On successive coefficients of univalent functions. J. Lond. Math. Soc.
**1963**, 38, 228–243. [Google Scholar] [CrossRef] - Grinspan, A.Z. The sharpening of the difference of the moduli of adjacent coefficients of schlicht functions. In Problems in Modern Function Theory, Proceedings of the Conference on Modern Problems of the Geometric Theory of Functions; Institute of Mathematics, Siberian Branch, Academy of Sciences of the USSR: Novosibirsk, Russia, 1976; pp. 41–45. [Google Scholar]
- Hayman, W.K. Multivalent Functions, 2nd ed.; Cambridge University Press: New York, NY, USA, 1994. [Google Scholar]
- Ilina, L.P. The relative growth of nearby coefficients of schlicht functions. Mat. Zametki
**1968**, 4, 715–722. [Google Scholar] - Obradović, M.; Thomas, D.K.; Tuneski, N. On the difference of coefficients of univalent functions. arXiv
**2020**, arXiv:2004.06369v. [Google Scholar] - Löwner, C. Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann.
**1923**, 89, 103–121. [Google Scholar] - Sim, Y.J.; Thomas, D.K. On the difference of coefficients of starlike and convex functions. Mathematics
**2020**, 8, 1521. [Google Scholar] [CrossRef] - Leung, Y. Successive coefficients of starlike functions. Bull. Lond. Math. Soc.
**1978**, 10, 193–196. [Google Scholar] [CrossRef] - Cho, N.E.; Kowalczyk, B.; Lecko, A. The sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc.
**2019**, 100, 86–96. [Google Scholar] [CrossRef] - Libera, R.J.; Złotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivatives in $\mathcal{P}$. Proc. Am. Math. Soc.
**1983**, 87, 251–257. [Google Scholar] [CrossRef] - Thomas, D.K.; Verma, S. Invariance of the coefficients of strongly convex functions. Bull. Aust. Math. Soc.
**2017**, 95, 435–445. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sim, Y.J.; Thomas, D.K.
On the Difference of Inverse Coefficients of Univalent Functions. *Symmetry* **2020**, *12*, 2040.
https://doi.org/10.3390/sym12122040

**AMA Style**

Sim YJ, Thomas DK.
On the Difference of Inverse Coefficients of Univalent Functions. *Symmetry*. 2020; 12(12):2040.
https://doi.org/10.3390/sym12122040

**Chicago/Turabian Style**

Sim, Young Jae, and Derek Keith Thomas.
2020. "On the Difference of Inverse Coefficients of Univalent Functions" *Symmetry* 12, no. 12: 2040.
https://doi.org/10.3390/sym12122040