Next Article in Journal
Spontaneous Symmetry Breaking and Its Pattern of Scales
Previous Article in Journal
Relationship between Inter-Limb Asymmetries and Physical Performance in Rink Hockey Players
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals

School of Mathematics and Statistics, Shandong Normal University, Jinan 250300, China
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(12), 2036; https://doi.org/10.3390/sym12122036
Submission received: 20 November 2020 / Revised: 5 December 2020 / Accepted: 8 December 2020 / Published: 9 December 2020
(This article belongs to the Section Mathematics)

Abstract

:
Let f ( z ) be a holomorphic Hecke eigenform of weight k with respect to SL ( 2 , Z ) and let L ( s , sym 2 f ) = n = 1 c n n s , s > 1 denote the symmetric square L-function of f. In this paper, we consider the Riesz mean of the form D ρ ( x ; sym 2 f ) = L ( 0 , sym 2 f ) Γ ( ρ + 1 ) x ρ + Δ ρ ( x ; sym 2 f ) and derive the asymptotic formulas for T H T + H Δ ρ k ( x ; sym 2 f ) d x , when k 3 .

1. Introduction

Let S k ( Γ ) be the space of all holomorphic cusp forms
f ( z ) = n = 1 a f ( n ) e ( n z ) , z H = { z = x + i y : y > 0 }
of even weight k 12 for Γ = SL ( 2 , Z ) ; S k ( Γ ) + denote the set of Hecke eigenforms from this space with a f ( 1 ) = 1 . Set
λ f ( n ) = a f ( n ) n k 1 2 .
For prime p, we have
λ f ( p ) = α f ( p ) + β f ( p ) , α f ( p ) β f ( p ) = 1 .
For f S k ( Γ ) + , we consider the symmetric square L ( s , sym 2 f ) of the Hecke L-function L ( s , f ) :
L ( s , sym 2 f ) : = p ( 1 p s ) 1 1 α f 2 ( p ) p s 1 1 β f 2 ( p ) p s 1 , s > 1
and have
L ( s , sym 2 f ) = ζ ( 2 s ) n = 1 λ f ( n 2 ) n s = n = 1 c n n s .
Then it is known that for any ϵ > 0 ,
| c n | d 3 ( n ) n ϵ ,
where d 3 ( n ) is the number of ways to write n as a product of three factors.
It is known that the function L ( s , sym 2 f ) is entire and satisfies the following functional equation:
Λ ( 1 s , sym 2 f ) = Λ ( s , sym 2 f ) ,
where
Λ ( s , sym 2 f ) : = π 3 s 2 Γ ( s 2 + 1 2 ) Γ ( s 2 + k 1 2 ) Γ ( s 2 + k 2 ) L ( s , sym 2 f ) .
By using Landau’s theorem, Deligne’s result and properties of L ( s , sym 2 f ) , we deduce the bound
n x c n x 1 2 log 2 x .
Khan [1] studied the twisted first moment of L ( s , sym 2 f ) at any point s on the critical line:
f H k L ( 1 2 , sym 2 f ) w f 1 = log k + C + O ( k 1 / 20 + ϵ ) ,
f H k L ( 1 2 + i t , sym 2 f ) a f ( m 2 ) w f 1 = ζ ( 1 + i 2 t ) m 1 / 2 + i t + ζ ( 1 i 2 t ) m 1 / 2 i t L ( 1 / 2 i t ) L ( 1 / 2 + i t ) + O ( k 1 / 20 + ϵ ) .
It followed that for any point on the critical line and large enough even k, there exists an eigenform f of weight k such that L ( s , sym 2 f ) is nonvanishing at that point. Hafner [2] considered the Riesz mean of the form
D ρ ( x ; sym 2 f ) = 1 Γ ( ρ + 1 ) n x ( x n ) ρ c n ,
where ρ 0 is a fixed number. Also, the Riesz mean can be represented as a sum of “residue function” and “error term”:
D ρ ( x ; sym 2 f ) = L ( 0 , sym 2 f ) Γ ( ρ + 1 ) x ρ + Δ ρ ( x ; sym 2 f ) .
For ρ = 0 , we have
n x c n = L ( 0 , sym 2 f ) + Δ 0 ( x ; sym 2 f ) .
The symmetric square L-function and the Riesz mean have been studied by many authors, for example, see [3,4,5,6,7,8]. Fomenko [9] considered Δ ρ ( x ; sym m f ) when m = 2 and obtained a truncated Voronoi type formula. Wang [10] generalized Fomenko’s result to m 3 under the hypothesis Nice ( m , f ) . Voronoi type formulas examined below allow one to consider exponential sums connected with the coefficients of the Dirichlet series of automorphic L-functions. It seems that no nontrivial estimates for these sums can be obtained. It is of interest to apply the heuristic arguments proposed in [11,12,13,14] to these sums.
Ivić and Sargos [15] studied the higher moments of Δ ( x ) , which denote the error term in the Dirichlet divisor problem. They got the asymptotic formulas for the cube and fourth integrals of Δ ( x ) . Liu and Wang [16] studied the higher-power moments of Δ ρ ( x ; sym 2 f ) and got
1 T Δ ρ A 0 ( x ; sym 2 f ) d x T 1 + 2 ρ + 1 3 A 0 + ϵ
when A 0 = A 0 ( ρ ) > 3 . Then for any integer 3 h < A 0 , they had the following asymptotic formula
1 T Δ ρ h ( x ; sym 2 f ) d x = 6 B ρ ( h , c ) ( 3 + ( 2 ρ + 1 ) h ) ( 2 π ) ( ρ + 1 ) h 3 h 2 T 1 + 2 ρ + 1 3 h + O ( T 1 + 2 ρ + 1 3 h + ϵ ( T δ ρ ( h , A 0 ) + T ρ 3 ) ) .
They also proved the results for ρ = 1 2 , h = 3 , 4 , 5 ,
1 T Δ ρ h ( x ; sym 2 f ) d x = 6 B 1 2 ( h , c ) ( 3 + 2 h ) ( 2 π ) 3 2 h 3 h 2 T 1 + 2 3 h + O ( T 1 + 2 3 h λ 1 / 2 ( h , 6 ) + ϵ ) ,
where λ 1 / 2 ( 3 , 6 ) = 1 22 , λ 1 / 2 ( 4 , 6 ) = 1 87 , λ 1 / 2 ( 5 , 6 ) = 1 498 .
As the vibration of Δ ρ ( x ; sym 2 f ) is complicable, it is natural to consider the mean value of Δ ρ ( x ; sym 2 f ) in short intervals. In this paper, we use the method of large value estimation and exponential sums to study the higher-power moments of the Riesz mean error term Δ ρ ( x ; sym 2 f ) in short intervals. Our results are as followed.
Theorem 1.
Let k 3 be fixed integer, T and H be two real numbers, δ > 0 be fixed constant. Then for T 2 3 + 2 ϵ d ρ , k ( 2 ρ + 1 ) δ H T , we have
T H T + H Δ ρ k ( x ; sym 2 f ) d x = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ ( H T 2 3 ) ( 2 ρ + 1 ) δ d ρ , k ) ,
where
B k = 2 k ρ k + 1 π k ρ k 3 k 2 c k , d ρ , k = ( 3 k 1 4 + k ρ k ) ( k + δ 2 ) + ( 2 ρ + 1 ) δ
and ϵ > 0 .
In particular, for ρ = 1 2 , we can prove the following results.
Corollary 1.
For any ϵ > 0 , k = 3 , 4 , 5 , we have
T H T + H Δ 1 2 3 ( x ; sym 2 f ) d x = B 3 H T 2 + O ( H T 2 + ϵ ( H T 2 3 ) 4 δ 13 + 17 δ ) , T H T + H Δ 1 2 4 ( x ; sym 2 f ) d x = B 4 H T 8 3 + O ( H T 8 3 + ϵ ( H T 2 3 ) 2 δ 50 + 27 δ ) , T H T + H Δ 1 2 5 ( x ; sym 2 f ) d x = B 5 H T 10 3 + O ( H T 10 3 + ϵ ( H T 2 3 ) 4 δ 477 + 163 δ ) .
Remark 1.
Please note that our results improve the results in [16] when k = 3 , 4 , 5 and δ > 50 31 .
To derive the above formulas, we start with Voronoi type formula of Δ ρ ( x ; sym 2 f ) to get the large value of it, where Halasz–Montgomery inequality and the estimates of exponential sums are used. For higher-power moments of Δ ρ ( x ; sym 2 f ) , we divide the interval [ H , 2 H ] into subintervals by binary method, and pick the maximal | Δ ρ ( x r ; sym 2 f ) | in r intervals of length V ρ + 1 to get the results. Moreover, if Δ ρ ( x ; sym 2 f ) has an upper bound, then we can get the following theorems.
Theorem 2.
Let 3 k < A be a fixed integer, 2 ρ + 1 3 ( ρ + 1 ) < θ < 1 2 be a real number and
Δ ρ ( x ; sym 2 f ) x θ ( ρ + 1 ) .
Then for any T θ [ A ( ρ + 1 ) 3 ] + 2 2 ρ + 1 3 A + ϵ H T , we have
T H T + H Δ ρ k ( x ; sym 2 f ) d x = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k ϵ ) .
Theorem 3.
Let k 3 be a fixed integer. If Δ ρ ( x ; sym 2 f ) x 2 ρ + 1 3 is true, then (3) is holds for T 2 3 + ϵ H T .

2. Some Preliminary Lemmas

To prove our theorems, we need the following lemmas.
Lemma 1.
Let x > 1 , N 1 . Then for any fixed ρ, 0 ρ 1 , we have
Δ ρ ( x ; sym 2 f ) = 2 ρ π ρ 1 3 1 2 Σ ( x ) + O ( x 4 ρ + 1 6 N 2 ρ + 1 6 + ϵ ) + O ( x 2 ρ + 2 3 + ϵ N ρ + 1 6 ) + O ( x ϵ ) ,
where
Σ ( x ) = n N c n n ρ + 2 3 x 2 ρ + 1 3 cos ( 6 π n x 3 π ρ 2 ) .
Proof. 
See Theorem 1.1 of Fomenko [9]. □
Lemma 2.
Let h 3 , ( i 1 , , i h 1 ) { 0 , 1 } h 1 be such that
n 1 3 + ( 1 ) i 1 n 2 3 + ( 1 ) i 2 n 3 3 + + ( 1 ) i h 1 n h 3 0 .
Then
| n 1 3 + ( 1 ) i 1 n 2 3 + + ( 1 ) i h 1 n h 3 | max ( n 1 , , n h ) ( 3 h 2 3 1 ) .
Proof. 
See for example Lemma 2.3 in [17]. □
Lemma 3.
If g ( x ) and h ( x ) are continuous real-valued functions of x and g ( x ) is monotonic, then
a b g ( x ) h ( x ) d x max a x b | g ( x ) | max a u < v b | u v h ( x ) d x | .
Proof. 
See Lemma 1 in [18]. □
Lemma 4.
Suppose k 3 , ( i 1 , , i k 1 ) { 0 , 1 } k 1 , ( i 1 , , i k 1 ) ( 0 , , 0 ) and
N 1 , , N k > 1 , 0 < Δ E 1 3 , E = max ( N 1 , , N k ) .
Let
A = A ( N 1 , , N k ; i 1 , , i k 1 ; Δ )
denote the number of solutions of the inequality
| n 1 3 + ( 1 ) i 1 n 2 3 + + ( 1 ) i k 1 n k 3 | < Δ
with N j < n j 2 N j , 1 j k . Then
A Δ E 1 3 N 1 N k + E 1 N 1 N k .
Proof. 
It can be proved similarly as Lemma 2.4 of [19], so we omit the details. □
Lemma 5.
Let S be an inner-product vector space over C , ( a , b ) denote the inner product in S and a 2 = ( a , a ) . Suppose that ξ, φ 1 , , φ R are arbitrary vectors in S. Then
l R | ( ξ , φ l ) | 2 ξ 2 max l 1 R l 2 R | ( φ l l , φ l 2 ) | .
Proof. 
This is the well-known Halasz–Montgomery inequality (see ( A . 40 ) of [20]). □

3. The Higher-Power Moments of Δ ρ ( x , sym 2 f ) in Short Intervals

The conclusion in Theorem 1 is obvious at T 2 H T . Let H T / 2 and T ϵ < y min ( T 2 ρ 2 ρ + 1 , T 1 2 ) be a parameter to be determined later. For any T x 2 T , we define
R 1 = R 1 ( x , y ) : = C n y c n n ρ + 2 3 x 2 ρ + 1 3 cos ( 6 π n x 3 π ρ 2 ) ,
where C = 2 ρ π ρ 1 3 1 2 ;
R 2 = R 2 ( x , y ) : = Δ ρ ( x , sym 2 f ) R 1 .
We will show that the higher-power moments of R 2 is small, and thus the integral
T H T + H Δ ρ k ( x , sym 2 f ) d x
can be approximated by T H T + H R 1 k d x .

3.1. Evaluation of the Integral T H T + H R 1 k d x

Let k 3 be any fixed integer. For each element i = ( i 1 , i 2 , , i k 1 ) I k 1 , I = { 0 , 1 } , from the elementary formula
cos a 1 cos a k = 1 2 k 1 i I k 1 cos ( a 1 + ( 1 ) i 1 a 2 + ( 1 ) i 2 a 3 + + ( 1 ) i k 1 a k ) ,
we have
R 1 k = C k x 2 ρ + 1 3 k n 1 y n k y c n 1 c n k ( n 1 n k ) ρ + 2 3 j = 1 k cos ( 6 π n j x 3 π ρ 2 ) = C k 2 k + 1 x 2 ρ + 1 3 k ( i 1 , , i k 1 ) { 0 , 1 } k 1 n 1 y n k y c n 1 c n k ( n 1 n k ) ρ + 2 3 × cos ( 6 π x 3 α ( n 1 , , n k ; i 1 , , i k 1 ) π ρ 2 β ( i 1 , , i k 1 ) ) ,
where
α ( n 1 , , n k ; i 1 , , i k 1 ) : = n 1 3 + ( 1 ) i 1 n 2 3 + + ( 1 ) i k 1 n k 3 , β ( i 1 , , i k 1 ) : = 1 + ( 1 ) i 1 + + ( 1 ) i k 1 .
It follows that
R 1 k = C k 2 k + 1 S 1 ( x ) + S 2 ( x ) ,
where
S 1 ( x ) : = x 2 ρ + 1 3 k ( i 1 , , i k 1 ) { 0 , 1 } k 1 cos ( π ρ 2 β ) n j y , 1 j k α = 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 , S 2 ( x ) : = x 2 ρ + 1 3 k ( i 1 , , i k 1 ) { 0 , 1 } k 1 n j y , 1 j k α 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 cos ( 6 π x 3 α π ρ 2 β ) , α : = α ( n 1 , , n k ; i 1 , , i k 1 ) , β : = β ( i 1 , , i k 1 ) .
First, we consider the contribution of S 1 ( x ) . We have
T H T + H S 1 ( x ) d x = ( i 1 , , i k 1 ) { 0 , 1 } k 1 cos ( π ρ 2 β ) n j y , 1 j k α = 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 T H T + H x 2 ρ + 1 3 k d x .
By Lemma ( 2.1 ) in [16] we have
( i 1 , , i k 1 ) { 0 , 1 } k 1 cos ( π ρ 2 β ) n j y , 1 j k α = 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 = c k + O ( y 2 ρ + 1 3 + ϵ ) ,
where c k is a constant that can be expressed explicitly. So, we get
C k 2 k + 1 T H T + H S 1 ( x ) d x = C k 2 k + 1 c k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ y 2 ρ + 1 3 ) = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ y 2 ρ + 1 3 ) .
Now we consider the contribution of S 2 ( x ) . By Lemma 3 we get
T H T + H S 2 ( x ) d x T 2 ρ + 1 3 k + 2 3 ( i 1 , , i k 1 ) { 0 , 1 } k 1 n j y , 1 j k α 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 | α | .
Let
Σ 1 = n j y , 1 j k α 0 c n 1 c n k ( n 1 n k ) ρ + 2 3 | α | ,
by Lemma 2 we have | α | y ( 3 k 2 3 1 ) . Then by the Lemma 4, for some
y ( 3 k 2 3 1 ) Δ < y 1 3 ,
we get
Σ 1 y ϵ ( n 1 n k ) ρ + 2 3 Δ A ( N 1 , , N k ; i 1 , , i k 1 ; Δ ) y ϵ ( n 1 n k ) ρ + 2 3 Δ ( Δ E 1 3 N 1 N k + E 1 N 1 N k ) y b ρ ( k ) + ϵ ,
where b ρ ( k ) = 3 k 2 4 3 + ( 1 ρ ) k 3 . So, we have
T H T + H S 2 ( x ) d x T 2 ρ + 1 3 k + 2 3 + ϵ y b ρ ( k ) .
Combining (5)–(8) we obtain
Lemma 6.
For any fixed k 3 , we have
T H T + H R 1 k d x = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ y 2 ρ + 1 3 + T 2 ρ + 1 3 k + 2 3 + ϵ y b ρ ( k ) ) .

3.2. Higher-Power Moments of R 2

Taking N = T in (4), by the definition of R 2 we have
R 2 = R 2 * + O ( T ρ + 1 3 + ϵ ) ,
where
R 2 * = C x 2 ρ + 1 3 y < n T c n n ρ + 2 3 cos ( 6 π n x 3 π ρ 2 ) .
Then we have
R 2 x 2 ρ + 1 3 y < n T c n n ρ + 2 3 e ( 3 n x 3 ) + T ρ + 1 3 + ϵ ,
which implies
T H T + H R 2 2 d x H T 2 ρ + 2 3 + ϵ + T H T + H x 2 ρ + 1 3 y < n T c n n ρ + 2 3 e ( 3 n x 3 ) 2 d x H T 2 ρ + 2 3 + ϵ + H T 4 ρ + 2 3 y < n T c n 2 n 2 ρ + 4 3 + T 4 ρ + 4 3 y < n < m T c n c m ( n m ) ρ + 2 3 ( n 3 m 3 ) H T 4 ρ + 2 3 y 1 + 2 ρ 3 .
Here we have used the following estimate
n u c n 2 u 1 + ϵ , y < n < m T c n c m ( n m ) ρ + 2 3 ( n 3 m 3 ) T 1 2 ρ 3 + ϵ .
By the Lemma 6 and the Hölder inequality we have
T H T + H R 1 A 0 d x H T 2 ρ + 1 3 A 0 + ϵ ,
where A 0 = k + δ . Using (2) and (12), we have
T H T + H R 2 A 0 d x T H T + H | Δ ρ ( x ; sym 2 f ) | A 0 + | R 1 | A 0 d x H T 2 ρ + 1 3 A 0 + ϵ .
For any 2 < A < A 0 , by (11), (13) and Hölder inequality we have
T H T + H R 2 A d x ( T H T + H R 2 2 d x ) A 0 A A 0 2 ( T H T + H R 2 A 0 d x ) A 2 A 0 2 H T 2 ρ + 1 3 A + ϵ y ( 2 ρ + 1 ) ( A 0 A ) 3 ( A 0 2 ) .
Lemma 7.
Suppose T ϵ y T 2 ρ 2 ρ + 1 , 2 < A < A 0 , then
T H T + H R 2 A d x H T 2 ρ + 1 3 A + ϵ y ( 2 ρ + 1 ) ( A 0 A ) 3 ( A 0 2 ) .

3.3. Proof of Theorem 1

Proof. 
Suppose 3 k < A 0 and T ϵ y T 2 ρ 2 ρ + 1 . By the elementary formula
( a + b ) k = a k + k a k 1 b + O ( | a k 2 b 2 | + | b | k ) ,
we get
T H T + H Δ ρ k ( x , sym 2 f ) d x = T H T + H R 1 k d x + O ( T H T + H | R 1 k 1 R 2 | d x ) + O ( T H T + H R 2 k d x ) .
By (12), Lemma 7 and Hölder inequality we get
T H T + H | R 1 k 1 R 2 | d x T H T + H | R 1 | A 0 d x k 1 A 0 T H T + H | R 2 | A 0 A 0 k + 1 d x A 0 k + 1 A 0 H T 2 ρ + 1 3 k + ϵ y ( 2 ρ + 1 ) ( A 0 k ) 3 ( A 0 2 ) .
Now take y = ( H T 2 3 ) 1 b ρ ( k ) + ( 2 ρ + 1 ) ( A 0 k ) / ( 3 A 0 6 ) . By Lemma 6, Lemma 7 and (14)–(15) we finally get
T H T + H Δ ρ k ( x , sym 2 f ) d x = B k T H T + H x 2 ρ + 1 3 k d x + O ( T 2 ρ + 1 3 k + 2 3 + ϵ y b ρ ( k ) + H T 2 ρ + 1 3 k + ϵ y ( 2 ρ + 1 ) ( A 0 k ) 3 ( A 0 2 ) ) = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ ( H T 2 3 ) ( 2 ρ + 1 ) ( A 0 k ) b ρ ( k ) ( 3 A 0 6 ) + ( 2 ρ + 1 ) ( A 0 k ) ) = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ ( H T 2 3 ) ( 2 ρ + 1 ) δ d ρ , k ) .
Theorem 1 follows immediately. □

4. Proof of Theorem 2 and Theorem 3

4.1. A Large Value Estimate of Δ ρ ( x ; sym 2 f )

Theorem 4.
Suppose N 1 + ϵ H x 1 < x 2 < < x k 2 H satisfy | Δ ρ ( x r ; sym 2 f ) | V ρ + 1 ( r = 1 , 2 , , R ) and | x j x i | V H 14 39 ( log H ) 30 13 ( i j ) . Then we have
R H 2 V 4 log 6 H + H 13 2 V 59 4 log 29 H .
Proof. 
Suppose that H 0 > V is a parameter to be determined later. Let I be any subinterval of [ H , 2 H ] of length not exceeding H 0 and let G = I { x 1 , x 2 , , x R } . Without loss of generality, we may assume that G = { x 1 , x 2 , , x R 0 } . Suppose J = ( 2 + 2 ϵ ) log H 3 log V log 2 . For any x r { x 1 , x 2 , , x R } , we apply Formula (4) with x = x r and M = 2 J + 1 H 2 + 2 ϵ V 3 to get
Δ ρ ( x ; sym 2 f ) H 2 ρ + 1 3 n M c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) + H 1 2 ρ 3 ϵ V ρ + 1 H 2 ρ + 1 3 j = 0 J n 2 j c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) ,
if we notice that | Δ ρ ( x ; sym 2 f ) | V ρ + 1 . Squaring, summing over the set G and then using the Cauchy inequality, we get that
r R 0 Δ ρ 2 ( x ; sym 2 f ) H 4 ρ + 2 3 r R 0 j = 0 J n 2 j c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) 2 H 4 ρ + 2 3 log H r R 0 j = 0 J n 2 j c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) 2 H 4 ρ + 2 3 log 2 H r R 0 n 2 j 0 c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) 2
for some 0 j 0 J .
Let M 0 = 2 j 0 . Take ξ ( d ) = { ξ n ( d ) } n = 1 with ξ n ( d ) = c n n ρ + 2 3 for n M 0 and zero otherwise. Take φ r ± ( d ) = { φ r , n ± ( d ) } n = 1 with φ r , n ± ( d ) = e ( 3 ( n x r ) 1 3 ) for n M 0 and zero otherwise. Then
( ξ ( d ) , φ r ± ( d ) ) = n M 0 c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) , ( φ r 1 ± ( d ) , φ r 2 ± ( d ) ) = n M 0 e ( 3 n 1 3 ( x r 1 1 3 x r 2 1 3 ) ) , ξ ( d ) 2 = n M 0 c n 2 n 2 ρ + 4 3 M 0 1 + 2 ρ 3 log 3 M 0 ,
where we have used the estimate
n M 0 c n 2 M 0 log 3 M 0 .
By (16) and Lemma 5 we get
R 0 V 2 ρ + 2 H 4 ρ + 2 3 log 2 H r R 0 n M 0 c n n ρ + 2 3 e ( ± 3 ( n x r ) 1 3 ) 2 H 4 ρ + 2 3 M 0 1 + 2 ρ 3 log 5 H max r 1 R 0 r 2 R 0 n M 0 e ( 3 n 1 3 ( x r 1 1 3 x r 2 1 3 ) ) H 4 ρ + 2 3 M 0 1 + 2 ρ 3 log 5 H M 0 + max r 1 R 0 r 2 R 0 r 1 r 2 n M 0 e ( 3 n 1 3 ( x r 1 1 3 x r 2 1 3 ) ) .
Following the calculation on [21], we get, by the Kuzmin–Landau inequality and the exponent pair ( 4 18 , 11 18 ) ,
n M 0 e ( 3 n 1 3 ( x r 1 1 3 x r 2 1 3 ) ) M 0 2 3 | x r 1 1 3 x r 2 1 3 | 1 + M 0 2 3 · 4 18 | x r 1 1 3 x r 2 1 3 | 4 18 M 0 11 18 ( M 0 H ) 2 3 | x r 1 x r 2 | + | x r 1 x r 2 | 4 18 ( M 0 H ) 4 27 M 0 11 18 ( M 0 H ) 2 3 | x r 1 x r 2 | + H 4 27 H 0 2 9 M 0 25 54 ,
where we have used the mean value theorem and the estimate | x r 1 x r 2 | H 0 . Substituting this estimate into (17), we get
R 0 V 2 ρ + 2 H 4 ρ + 2 3 M 0 1 + 2 ρ 3 log 5 H M 0 + max r 1 R 0 r 2 R 0 r 1 r 2 ( M 0 H ) 2 3 | x r 1 x r 2 | + H 4 27 H 0 2 9 M 0 25 54 H 4 ρ + 2 3 M 0 1 + 2 ρ 3 log 5 H M 0 + M 0 2 3 H 2 3 V 1 log H + H 4 27 H 0 2 9 M 0 25 54 R 0 H 4 ρ + 2 3 M 0 2 2 ρ 3 log 5 H + M 0 1 2 ρ 3 H 4 + 4 ρ 3 V 1 log 6 H + H 14 27 + 4 ρ 3 H 0 2 9 M 0 7 54 2 ρ 3 R 0 log 5 H M 0 1 2 ρ 3 H 4 + 4 ρ 3 V 1 log 6 H + H 14 27 + 4 ρ 3 H 0 2 9 M 0 7 54 2 ρ 3 R 0 log 5 H ,
where we use the facts that { x r } is V-spaced and M 0 H 2 + 2 ϵ V 3 . Take
H 0 = c H 7 2 V 43 4 log 45 2 H
for some sufficiently small constant c such that we can get for this H 0 that
R 0 V 2 ρ + 2 H 2 V 2 + 2 ρ log 6 H ,
i.e.,
R 0 H 2 V 4 log 6 H .
It is easy to check that H 0 V if V H 14 39 ( log H ) 30 13 .
Now we divide the interval [ H , 2 H ] into O ( 1 + H H 0 ) subintervals of length not exceeding H 0 . In each interval of this type, the number of x r ’s is at most O ( H 2 V 4 log 6 H ) . So, we have
R R 0 1 + H H 0 H 2 V 4 log 6 H + H 3 V 4 H 0 1 log 6 H H 2 V 4 log 6 H + H 13 2 V 59 4 log 29 H .

4.2. Proof of Theorem 2

By (4) Liu and Wang [16] obtained that
Δ ρ ( x ; sym 2 f ) x ρ + 1 2 .
Let 2 ρ + 1 3 ( ρ + 1 ) < θ < 1 2 be a real number, such that Δ ρ ( x ; sym 2 f ) x θ ( ρ + 1 ) . Suppose T H x 1 < x 2 < < x k T + H satisfy | Δ ρ ( x r ; sym 2 f ) | V ρ + 1 ( r = 1 , 2 , , R V ) and | x j x i | V , ( i j ) , T 2 ρ + 1 3 ( ρ + 1 ) V T θ , by Theorem 4 we have
R T 2 V 4 log 6 T + H T 11 2 V 59 4 log 29 T .
An argument similar to ( 13.70 ) of [20] proved that
T H T + H Δ ρ A ( x , sym 2 f ) d x H T 2 ρ + 1 3 A + V V r R V | Δ ρ k ( x r , sym 2 f ) | A ,
where
T 2 ρ + 1 3 ( ρ + 1 ) V T θ
and
V ρ + 1 | Δ ρ ( x r ; sym 2 f ) | 2 V ρ + 1 ( r = 1 , 2 , , R V ) .
Therefore, by (18) we have
V r R V | Δ ρ k ( x r , sym 2 f ) | A R V V A ( ρ + 1 ) + 1 T 2 + ϵ V A ( ρ + 1 ) 3 + H T 11 2 + ϵ V A ( ρ + 1 ) 55 4 T θ [ A ( ρ + 1 ) 3 ] + 2 + ϵ + H T 11 2 + 2 ρ + 1 3 A 55 ( 2 ρ + 1 ) 12 ( ρ + 1 ) + ϵ .
By (19) and (20) we can get
T H T + H Δ ρ A ( x , sym 2 f ) d x H T 2 ρ + 1 3 A + ϵ + T θ [ A ( ρ + 1 ) 3 ] + 2 + ϵ ,
where 1 4 ρ 1 . When 2 < A < 9 θ 3 3 θ ( ρ + 1 ) 2 ρ 1 , if H T θ [ A ( ρ + 1 ) 3 ] + 2 2 ρ + 1 3 A , then we have
T H T + H Δ ρ A ( x , sym 2 f ) d x H T 2 ρ + 1 3 A + ϵ .
Please note that for every 2 < A < 9 θ 3 3 θ ( ρ + 1 ) 2 ρ 1 , taking δ = 3 d ρ , k ϵ 2 ( 2 ρ + 1 ) in Theorem 1, we can get the result of Theorem 2.

4.3. Proof of Theorem 3

Suppose Δ ρ ( x ; sym 2 f ) x 2 ρ + 1 3 , we can obtain the following estimate
T H T + H Δ ρ k + δ ( x , sym 2 f ) d x H T 2 ρ + 1 3 ( k + δ ) + ϵ ,
where ϵ = ( k + 1 ) ϵ . By Theorem 1 we can get
T H T + H Δ ρ k ( x ; sym 2 f ) d x = B k T H T + H x 2 ρ + 1 3 k d x + O ( H T 2 ρ + 1 3 k + ϵ ( H T 2 3 ) ( 2 ρ + 1 ) δ d ρ , k )
when T 2 3 + 2 ϵ d ρ , k ( 2 ρ + 1 ) δ H T .
Let δ = 3 d ρ , k ( k + 1 ) ϵ 2 ( 2 ρ + 1 ) in Theorem 1, then we get Theorem 3.

Author Contributions

Conceptualization, R.Z. and X.H.; methodology, D.Z.; validation, R.Z., X.H. and D.Z.; formal analysis, R.Z.; investigation, R.Z.; resources, R.Z.; data curation, D.Z.; writing–original draft preparation, R.Z.; writing–review and editing, X.H.; visualization, D.Z.; supervision, D.Z.; project administration, D.Z.; funding acquisition, D.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China (Grant No. 11771256).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Khan, R. The first moment of the symmetric-square L-function. J. Number Theory 2007, 124, 259–266. [Google Scholar] [CrossRef] [Green Version]
  2. Hafner, J.L. On the representation of the summatory functions of a class of arithmetical functions. Lect. Notes Math. 1981, 899, 148–165. [Google Scholar]
  3. Bump, D.; Ginzburg, D. Symmetric square L-functions on GL(r). Ann. Math. 1992, 136, 37–205. [Google Scholar] [CrossRef]
  4. Zhang, D.Y.; Lau, Y.; Wang, Y.N. Remark on the paper "On products of Fourier coefficients of cusp forms". Arch. Math. 2017, 108, 263–269. [Google Scholar] [CrossRef]
  5. Zhang, D.Y.; Wang, Y.N. Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 2017, 176, 211–225. [Google Scholar] [CrossRef]
  6. Ichihara, Y. On Riesz mean for the coefficients of twisted Rankin-Selberg L-functions. J. Math. Soc. Jpn. 2003, 55, 81–100. [Google Scholar] [CrossRef]
  7. Iwaniec, H.; Michel, P. The second moment of the symmetric square L-functions. Ann. Acad. Sci. Fenn. Math. 2001, 26, 465–482. [Google Scholar]
  8. Blomer, V. On the central value of symmetric square L-functions. Math. Z. 2008, 260, 750–777. [Google Scholar] [CrossRef]
  9. Fomenko, O.M. The behavior of Riesz means of the Coefficients of a symmetric square L-function. J. Math. Sci. 2007, 143, 3174–3181. [Google Scholar] [CrossRef]
  10. Wang, H. On the Riesz means of coefficients of mth symmetric power L-functions. Lith. Math. J. 2010, 50, 474–488. [Google Scholar] [CrossRef]
  11. Iwaniec, H.; Luo, W.; Sarnak, P. Low lying zeros of families of L-functions. Publ. IHES 2000, 91, 55–131. [Google Scholar] [CrossRef] [Green Version]
  12. Song, P.; Zhai, W.G.; Zhang, D.Y. Power moments of Hecke eigenvalues for congruence group. J. Number Theory 2019, 198, 139–158. [Google Scholar] [CrossRef]
  13. Zhang, D.Y.; Zhai, W.G. On the fifth-power moments of Δ(x). Int. J. Number Theory 2011, 7, 71–86. [Google Scholar] [CrossRef]
  14. Zhang, D.Y.; Wang, Y.N. Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup Γ0(N). Ramanujan J. 2018, 47, 685–700. [Google Scholar] [CrossRef]
  15. Ivić, A.; Sargos, P. On the higher moments of the error term in the divisor problem. Ill. J. Math. 2007, 51, 353–377. [Google Scholar] [CrossRef]
  16. Liu, K.; Wang, H.Y. Higher power moments of the Riesz mean error term of symmetric square L-function. J. Number Theory 2011, 131, 2247–2261. [Google Scholar] [CrossRef] [Green Version]
  17. Tanigawa, Y.; Zhang, D.Y.; Zhai, W.G. On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term. Sci. China Ser. A 2008, 51, 148–160. [Google Scholar] [CrossRef] [Green Version]
  18. Tsang, K.M. Higher-power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 1991, 65, 65–84. [Google Scholar] [CrossRef]
  19. Zhai, W.G. On higher-power moments of Δ(x) (II). Acta Arith. 2004, 114, 35–54. [Google Scholar] [CrossRef] [Green Version]
  20. Ivić, A. The Riemann Zeta Function: Theory and Appllications; Dover: New York, NY, USA, 2003. [Google Scholar]
  21. Zhai, W.G. On the error term in Weyl’s law for Heisenberg manifolds. Acta Arith. 2008, 134, 219–257. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhang, R.; Han, X.; Zhang, D. Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals. Symmetry 2020, 12, 2036. https://doi.org/10.3390/sym12122036

AMA Style

Zhang R, Han X, Zhang D. Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals. Symmetry. 2020; 12(12):2036. https://doi.org/10.3390/sym12122036

Chicago/Turabian Style

Zhang, Rui, Xue Han, and Deyu Zhang. 2020. "Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals" Symmetry 12, no. 12: 2036. https://doi.org/10.3390/sym12122036

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop