Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals
Abstract
:1. Introduction
2. Some Preliminary Lemmas
3. The Higher-Power Moments of in Short Intervals
3.1. Evaluation of the Integral
3.2. Higher-Power Moments of
3.3. Proof of Theorem 1
4. Proof of Theorem 2 and Theorem 3
4.1. A Large Value Estimate of
4.2. Proof of Theorem 2
4.3. Proof of Theorem 3
Author Contributions
Funding
Conflicts of Interest
References
- Khan, R. The first moment of the symmetric-square L-function. J. Number Theory 2007, 124, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Hafner, J.L. On the representation of the summatory functions of a class of arithmetical functions. Lect. Notes Math. 1981, 899, 148–165. [Google Scholar]
- Bump, D.; Ginzburg, D. Symmetric square L-functions on GL(r). Ann. Math. 1992, 136, 37–205. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Lau, Y.; Wang, Y.N. Remark on the paper "On products of Fourier coefficients of cusp forms". Arch. Math. 2017, 108, 263–269. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form. J. Number Theory 2017, 176, 211–225. [Google Scholar] [CrossRef]
- Ichihara, Y. On Riesz mean for the coefficients of twisted Rankin-Selberg L-functions. J. Math. Soc. Jpn. 2003, 55, 81–100. [Google Scholar] [CrossRef]
- Iwaniec, H.; Michel, P. The second moment of the symmetric square L-functions. Ann. Acad. Sci. Fenn. Math. 2001, 26, 465–482. [Google Scholar]
- Blomer, V. On the central value of symmetric square L-functions. Math. Z. 2008, 260, 750–777. [Google Scholar] [CrossRef]
- Fomenko, O.M. The behavior of Riesz means of the Coefficients of a symmetric square L-function. J. Math. Sci. 2007, 143, 3174–3181. [Google Scholar] [CrossRef]
- Wang, H. On the Riesz means of coefficients of mth symmetric power L-functions. Lith. Math. J. 2010, 50, 474–488. [Google Scholar] [CrossRef]
- Iwaniec, H.; Luo, W.; Sarnak, P. Low lying zeros of families of L-functions. Publ. IHES 2000, 91, 55–131. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Zhai, W.G.; Zhang, D.Y. Power moments of Hecke eigenvalues for congruence group. J. Number Theory 2019, 198, 139–158. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhai, W.G. On the fifth-power moments of Δ(x). Int. J. Number Theory 2011, 7, 71–86. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Wang, Y.N. Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup Γ0(N). Ramanujan J. 2018, 47, 685–700. [Google Scholar] [CrossRef]
- Ivić, A.; Sargos, P. On the higher moments of the error term in the divisor problem. Ill. J. Math. 2007, 51, 353–377. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.Y. Higher power moments of the Riesz mean error term of symmetric square L-function. J. Number Theory 2011, 131, 2247–2261. [Google Scholar] [CrossRef] [Green Version]
- Tanigawa, Y.; Zhang, D.Y.; Zhai, W.G. On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term. Sci. China Ser. A 2008, 51, 148–160. [Google Scholar] [CrossRef] [Green Version]
- Tsang, K.M. Higher-power moments of Δ(x), E(t) and P(x). Proc. Lond. Math. Soc. 1991, 65, 65–84. [Google Scholar] [CrossRef]
- Zhai, W.G. On higher-power moments of Δ(x) (II). Acta Arith. 2004, 114, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Ivić, A. The Riemann Zeta Function: Theory and Appllications; Dover: New York, NY, USA, 2003. [Google Scholar]
- Zhai, W.G. On the error term in Weyl’s law for Heisenberg manifolds. Acta Arith. 2008, 134, 219–257. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Han, X.; Zhang, D. Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals. Symmetry 2020, 12, 2036. https://doi.org/10.3390/sym12122036
Zhang R, Han X, Zhang D. Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals. Symmetry. 2020; 12(12):2036. https://doi.org/10.3390/sym12122036
Chicago/Turabian StyleZhang, Rui, Xue Han, and Deyu Zhang. 2020. "Power Moments of the Riesz Mean Error Term of Symmetric Square L-Function in Short Intervals" Symmetry 12, no. 12: 2036. https://doi.org/10.3390/sym12122036