# Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Relaying Network Model

_{s}to the R and uses the remaining energy (1 − ρ)P

_{s}for the information transmission from the S to the D via the help of R, where 0 < ρ < 1 [18,19].

## 3. Outage Probability and Throughput Analysis

**Lemma**

**1.**

**Lemma**

**2.**

#### 3.1. Delay-Limited Transmission (DLT)

#### 3.1.1. The Outage Probability (OP)

_{1}can be obtained as:

#### 3.1.2. Average System Throughput (ST)

#### 3.2. Delay-Tolerant Transmission (DTT)

**Proposition**

**1.**

**Proposition**

**2.**

#### 3.3. Optimal PS Factor

## 4. Numerical Results and Discussion

^{6}random samples of each Rayleigh distributed channel gain [22,23,24,25,26,27,28]. The analytical and simulation results should match together to verify the correctness of our analysis. In Table 1, we propose some main system parameters.

_{0}= 10 and 20 dB and α from 0 to 1 (Figure 5). The results show that the ST in the DTT mode is better than that in the DLT mode, and all the analytical and simulation results are the same.

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Bi, S.; Ho, C.K.; Zhang, R. Wireless powered communication: Opportunities and challenges. IEEE Commun. Mag.
**2015**, 53, 117–125. [Google Scholar] [CrossRef] [Green Version] - Niyato, D.; Kim, D.I.; Maso, M.; Han, Z. Wireless Powered Communication Networks: Research Directions and Technological Approaches. IEEE Wirel. Commun.
**2017**, 24, 88–97. [Google Scholar] [CrossRef] - Yu, H.; Lee, H.; Jeon, H. What is 5G? Emerging 5G Mobile Services and Network Requirements. Sustainability
**2017**, 9, 1848. [Google Scholar] [CrossRef] [Green Version] - Zhou, X.; Zhang, R.; Ho, C.K. Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff. IEEE Trans. Commun.
**2013**, 61, 4754–4767. [Google Scholar] [CrossRef] [Green Version] - Nguyen, T.N.; Tran, M.; Ha, D.; Trang, T.T.; Voznak, M. Multi-source in DF Cooperative Networks with the PSR Protocol Based Full-duplex Energy Harvesting over a Rayleigh Fading Channel: Performance Analysis. Proc. Est. Acad. Sci.
**2019**, 68, 264. [Google Scholar] [CrossRef] - Nguyen, T.N.; Tran, M.; Nguyen, T.L.; Ha, D.H.; Voznak, M. Performance Analysis of a User Selection Protocol in Cooperative Networks with Power Splitting Protocol-Based Energy Harvesting Over Nakagami-m/Rayleigh Channels. Electronics
**2019**, 8, 448. [Google Scholar] [CrossRef] [Green Version] - Nguyen, T.; Quang Minh, T.; Tran, P.; Vozňák, M. Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments. Sensors
**2018**, 18, 1781. [Google Scholar] [CrossRef] [Green Version] - Gu, Y.; Chen, H.; Li, Y.; Vucetic, B. An adaptive transmission protocol for wireless-powered cooperative communications. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4223–4228. [Google Scholar]
- Ju, H.; Zhang, R. Throughput Maximization in Wireless Powered Communication Networks. IEEE Trans. Wirel. Commun.
**2014**, 13, 418–428. [Google Scholar] [CrossRef] [Green Version] - Bhatnagar, M.R. On the Capacity of Decode-and-Forward Relaying over Rician Fading Channels. IEEE Commun. Lett.
**2013**, 17, 1100–1103. [Google Scholar] [CrossRef] [Green Version] - Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying Protocols for Wireless Energy Harvesting and Information Processing. IEEE Trans. Wirel. Commun.
**2013**, 12, 3622–3636. [Google Scholar] [CrossRef] [Green Version] - Tan, N.; Nguyen, T.H.Q.; Minh, P.; Tran, T.; Voznak, M. Adaptive Energy Harvesting Relaying Protocol for Two-Way Half Duplex System Network over Rician Fading Channels. Wirel. Commun. Mob. Comput.
**2018**, 2018, 10. [Google Scholar] - Gu, Y.; Aissa, S. RF-Based Energy Harvesting in Decode-and-Forward Relaying Systems: Ergodic and Outage Capacities. IEEE Trans. Wirel. Commun.
**2015**, 14, 6425–6434. [Google Scholar] [CrossRef] - Li, T.; Fan, P.; Letaief, K.B. Outage Probability of Energy Harvesting Relay-Aided Cooperative Networks over Rayleigh Fading Channel. IEEE Trans. Veh. Technol.
**2016**, 65, 972–978. [Google Scholar] [CrossRef] - Ma, Y.; Chen, H.; Lin, Z.; Li, Y.; Vucetic, B. Distributed resource allocation for power beacon-assisted wireless-powered communications. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 3849–3854. [Google Scholar]
- Huang, K.; Lau, V.K.N. Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment. IEEE Trans. Wirel. Commun.
**2014**, 13, 902–912. [Google Scholar] [CrossRef] [Green Version] - Park, J.-H.; Jeon, Y.-S.; Han, S. Energy Beamforming for Wireless Power Transfer in MISO Heterogeneous Network With Power Beacon. IEEE Commun. Lett.
**2017**, 21, 1163–1166. [Google Scholar] [CrossRef] - Zhong, C.; Jin, S.; Wong, K.-K.; Mckay, M.R. Ergodic Mutual Information Analysis for Multi-Keyhole MIMO Channels. IEEE Trans. Wirel. Commun.
**2011**, 10, 1754–1763. [Google Scholar] [CrossRef] - Duong, T.Q.; Duy, T.T.; Matthaiou, M.; Tsiftsis, T.; Karagiannidis, G.K. Cognitive cooperative networks in dual-hop asymmetric fading channels. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9–13 December 2013; pp. 955–961. [Google Scholar]
- Zwillinger, D. Table of Integrals, Series, and Products; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Chong, E.K.P.; Zak, S.H. An Introduction to Optimization, 4th ed.; Wiley: New York, NY, USA, 2013; pp. 1–640. [Google Scholar]
- Nguyen, T.N.; Minh, T.H.Q.; Tran, P.T.; Voznak, M.; Duy, T.T.; Nguyen, T.L.; Tin, P.T. Performance Enhancement for Energy Harvesting Based Two-way Relay Protocols in Wireless Ad-hoc Networks with Partial and Full Relay Selection Methods. Ad Hoc Netw.
**2019**, 84, 178–187. [Google Scholar] [CrossRef] - Tan, N.; Phuong, N.; Tran, T.; Minh, T.H.Q.; Voznak, M. Two-Way Half Duplex Decode and Forward Relaying Network with Hardware Impairment over Rician Fading Channel: System Performance Analysis. Elektron. Ir Elektrotechnika
**2018**, 24, 74–78. [Google Scholar] - Phan, V.D.; Nguyen, T.N.; Tran, M.; Trang, T.T.; Voznak, M.; Ha, D.H.; Nguyen, T.L. Power Beacon-Assisted Energy Harvesting in a Half-Duplex Communication Network under Co-Channel Interference over a Rayleigh Fading Environment: Energy Efficiency and Outage Probability Analysis. Energies
**2019**, 12, 2579. [Google Scholar] [CrossRef] [Green Version] - Nguyen, T.N.; Tran, M.; Ha, D.H.; Nguyen, T.L.; Vozňák, M. Energy Harvesting Based Two-way Full-duplex Relaying Network over a Rician Fading Environment: Performance Analysis. Proc. Est. Acad. Sci.
**2019**, 68, 111. [Google Scholar] [CrossRef] - Nguyen, T.; Tran, M.; Nguyen, T.L.; Ha, D.H.; Voznak, M. Multisource Power Splitting Energy Harvesting Relaying Network in Half-Duplex System over Block Rayleigh Fading Channel: System Performance Analysis. Electronics
**2019**, 8, 67. [Google Scholar] [CrossRef] [Green Version] - Nguyen, T.N.; Tran, M.; Tran, P.T.; Tin, P.T.; Nguyen, T.L.; Ha, D.H.; Voznak, M. On the Performance of Power Splitting Energy Harvested Wireless Full-Duplex Relaying Network with Imperfect CSI over Dissimilar Channels. Secur. Commun. Netw.
**2018**, 2018, 6036087. [Google Scholar] [CrossRef] - Nguyen, T.; Tran Tin, P.; Ha, D.; Voznak, M.; Tran, P.; Tran, M.; Nguyen, T.L. Hybrid TSR–PSR Alternate Energy Harvesting Relay Network over Rician Fading Channels: Outage Probability and SER Analysis. Sensors
**2018**, 18, 3839. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 2.**The energy harvesting (EH) and delay-tolerant (DT) processes in the power-splitting (PS) protocol.

Symbol | Name | Values |
---|---|---|

${\eta}_{b}={\eta}_{s}=\eta $ | Energy-harvesting efficiency | 0.05–0.95 |

${\lambda}_{bs}$ | Mean of ${\left|{h}_{bs}\right|}^{2}$ | 0.5 |

${\lambda}_{rr}$ | Mean of ${\left|{h}_{rr}\right|}^{2}$ | 0.5 |

${\lambda}_{sr}$ | Mean of ${\left|{h}_{sr}\right|}^{2}$ | 0.5 |

${\lambda}_{rd}$ | Mean of ${\left|{h}_{rd}\right|}^{2}$ | 0.5 |

γ_{th} | SNR threshold | 1 |

P_{B}/N_{0} | Beacon power-to-noise ratio | 0–30 dB |

R | Source rate | 1 bps/Hz |

ρ | Power-splitting factor | 0.05–0.95 |

α | Time-switching factor | 0.05–0.95 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tin, P.T.; Dinh, B.H.; Nguyen, T.N.; Ha, D.H.; Trang, T.T.
Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. *Symmetry* **2020**, *12*, 106.
https://doi.org/10.3390/sym12010106

**AMA Style**

Tin PT, Dinh BH, Nguyen TN, Ha DH, Trang TT.
Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis. *Symmetry*. 2020; 12(1):106.
https://doi.org/10.3390/sym12010106

**Chicago/Turabian Style**

Tin, Phu Tran, Bach Hoang Dinh, Tan N. Nguyen, Duy Hung Ha, and Tran Thanh Trang.
2020. "Power Beacon-Assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis" *Symmetry* 12, no. 1: 106.
https://doi.org/10.3390/sym12010106