Lorentz-Violating Matter-Gravity Couplings in Small-Eccentricity Binary Pulsars
Abstract
:1. Introduction
2. Matter-Gravity Couplings in the SME
3. Binary Pulsars with Lorentz-Violating Matter-Gravity Couplings
4. Bounds on the SME Coefficients
5. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EFT | Effective Field Theory |
GR | General Relativity |
LLR | Lunar Laser Ranging |
NS | Neutron Star |
SM | Standard Model |
SME | Standard-Model Extension |
WD | White Dwarf |
References
- Tasson, J.D. What Do We Know About Lorentz Invariance? Rept. Prog. Phys. 2014, 77, 062901. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Spontaneous Breaking of Lorentz Symmetry in String Theory. Phys. Rev. D 1989, 39, 683. [Google Scholar] [CrossRef] [PubMed]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef]
- Kostelecký, A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Gauge field theories with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2019, 99, 056016. [Google Scholar] [CrossRef] [Green Version]
- Bailey, Q.G.; Kostelecký, V.A. Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 2006, 74, 045001. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J.D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Shao, C.G.; Tan, Y.-J.; Tan, W.-H.; Yang, S.-Q.; Luo, J.; Tobar, M.E.; Bailey, Q.G.; Long, J.C.; Weisman, E.; Xu, R.; et al. Combined search for Lorentz violation in short-range gravity. Phys. Rev. Lett. 2016, 117, 071102. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Mewes, M. Lorentz and Diffeomorphism Violations in Linearized Gravity. Phys. Lett. B 2018, 779, 136–142. [Google Scholar] [CrossRef]
- Tasson, J.D. Gravitational Searches for Lorentz Violation with Matter and Astrophysics. In Proceedings of the 7th Meeting on CPT and Lorentz Symmetry (CPT 16), Bloomington, IN, USA, 20–24 June 2016; pp. 13–16. [Google Scholar]
- Bailey, Q.G. Recent Developments in Spacetime-Symmetry tests in Gravity. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry (CPT’19), Bloomington, IN, USA, 12–16 May 2019. [Google Scholar]
- Shao, L. Pulsar Tests of the Gravitational Lorentz Violation. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry (CPT’19), Bloomington, IN, USA, 12–16 May 2019. [Google Scholar]
- Tasson, J.D. Maximal Tests in Minimal Gravity. In Proceedings of the 8th Meeting on CPT and Lorentz Symmetry (CPT’19), Bloomington, IN, USA, 12–16 May 2019. [Google Scholar]
- Hees, A.; Bailey, Q.G.; Bourgoin, A.; Bars, H.P.L.; Guerlin, C.; Le Poncin-Lafitte, C. Tests of Lorentz symmetry in the gravitational sector. Universe 2016, 2, 30. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation. Rev. Mod. Phys. 2011, 83, 11–31. [Google Scholar] [CrossRef]
- Shao, L. Tests of local Lorentz invariance violation of gravity in the standard model extension with pulsars. Phys. Rev. Lett. 2014, 112, 111103. [Google Scholar] [CrossRef]
- Shao, L. New pulsar limit on local Lorentz invariance violation of gravity in the standard-model extension. Phys. Rev. D 2014, 90, 122009. [Google Scholar] [CrossRef]
- Shao, L.; Bailey, Q.G. Testing velocity-dependent CPT-violating gravitational forces with radio pulsars. Phys. Rev. D 2018, 98, 084049. [Google Scholar] [CrossRef]
- Shao, L.; Bailey, Q.G. Testing the Gravitational Weak Equivalence Principle in the Standard-Model Extension with Binary Pulsars. Phys. Rev. D 2019, 99, 084017. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Shao, L.; Wex, N. New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars. Class. Quant. Grav. 2012, 29, 215018. [Google Scholar] [CrossRef]
- Shao, L.; Caballero, R.N.; Kramer, M.; Wex, N.; Champion, D.J.; Jessner, A. A new limit on local Lorentz invariance violation of gravity from solitary pulsars. Class. Quant. Grav. 2013, 30, 165019. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wex, N. New limits on the violation of local position invariance of gravity. Class. Quant. Grav. 2013, 30, 165020. [Google Scholar] [CrossRef]
- Shao, L.; Wex, N. Tests of gravitational symmetries with radio pulsars. Sci. China Phys. Mech. Astron. 2016, 59, 699501. [Google Scholar] [CrossRef]
- Jennings, R.J.; Tasson, J.D.; Yang, S. Matter-Sector Lorentz Violation in Binary Pulsars. Phys. Rev. D 2015, 92, 125028. [Google Scholar] [CrossRef]
- Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 448. [Google Scholar] [CrossRef]
- Desvignes, G.; Caballero, R.N.; Lentati, L.; Verbiest, J.P.W.; Champion, D.J.; Stappers, B.W.; Janssen, G.H.; Lazarus, P.; Osłowski, S.; Babak, S.; et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array. Mon. Not. Roy. Astron. Soc. 2016, 458, 3341–3380. [Google Scholar] [CrossRef]
- Freire, P.C.C.; Wex, N.; Esposito-Farèse, G.; Verbiest, J.P.W.; Bailes, M.; Jacoby, B.A.; Kramer, M.; Stairs, I.H.; Antoniadis, J.; Janssen, G.H. The relativistic pulsar-white dwarf binary PSR J1738+0333 II. The most stringent test of scalar-tensor gravity. Mon. Not. Roy. Astron. Soc. 2012, 423, 3328. [Google Scholar] [CrossRef]
- Lange, C.; Camilo, F.; Wex, N.; Kramer, M.; Backer, D.C.; Lyne, A.G.; Doroshenko, O. Precision timing measurements of psr j1012+5307. Mon. Not. Roy. Astron. Soc. 2001, 326, 274. [Google Scholar] [CrossRef]
- Bluhm, R.; Bossi, H.; Wen, Y. Gravity with explicit spacetime symmetry breaking and the Standard-Model Extension. arXiv 2019, arXiv:1907.13209. [Google Scholar]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Wex, N. Testing Relativistic Gravity with Radio Pulsars. In Frontiers in Relativistic Celestial Mechanics: Applications and Experiments; Kopeikin, S.M., Ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2014; Volume 2, p. 39. [Google Scholar]
- Poisson, E.; Will, C.M. Gravity: Newtonian, Post-Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Kopeikin, S.M. Proper Motion of Binary Pulsars as a Source of Secular Variations of Orbital Parameters. Astrophys. J. Lett. 1996, 467, L93. [Google Scholar] [CrossRef]
- Altschul, B. Limits on Neutron Lorentz Violation from Pulsar Timing. Phys. Rev. D 2007, 75, 023001. [Google Scholar] [CrossRef]
- Tasson, J.D. Lorentz violation, gravitomagnetism, and intrinsic spin. Phys. Rev. D 2012, 86, 124021. [Google Scholar] [CrossRef]
- Panjwani, H.; Carbone, L.; Speake, C.C. Laboratory Searches for Preferred Frame Effects: Ongoing Work and Results at Birmingham. In Proceedings of the 5th Meeting on CPT and Lorentz Symmetry (CPT 10), Bloomington, IN, USA, 28 June–2 July 2010; pp. 194–198. [Google Scholar]
- Flowers, N.A.; Goodge, C.; Tasson, J.D. Superconducting-Gravimeter Tests of Local Lorentz Invariance. Phys. Rev. Lett. 2017, 119, 201101. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, A.; Le Poncin-Lafitte, C.; Hees, A.; Bouquillon, S.; Francou, G.; Angonin, M.C. Lorentz Symmetry Violations from Matter-Gravity Couplings with Lunar Laser Ranging. Phys. Rev. Lett. 2017, 119, 201102. [Google Scholar] [CrossRef] [PubMed]
- Schreck, M. Fermionic Lorentz violation and its implications for interferometric gravitational-wave detection. Class. Quant. Grav. 2017, 34, 135009. [Google Scholar] [CrossRef] [Green Version]
- Kostelecký, V.A.; Tasson, J. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Rev. Lett. 2009, 102, 010402. [Google Scholar] [CrossRef] [Green Version]
- Hohensee, M.A.; Chu, S.; Peters, A.; Mueller, H. Equivalence Principle and Gravitational Redshift. Phys. Rev. Lett. 2011, 106, 151102. [Google Scholar] [CrossRef] [Green Version]
- Hohensee, M.A.; Mueller, H.; Wiringa, R.B. Equivalence Principle and Bound Kinetic Energy. Phys. Rev. Lett. 2013, 111, 151102. [Google Scholar] [CrossRef]
- Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.D.; Ebran, J.P.; Bailey, Q.G.; Bize, S.; Khan, E.; Wolf, P. Lorentz-symmetry test at Planck-scale suppression with nucleons in a spin-polarized 133Cs cold atom clock. Phys. Rev. D 2017, 95, 075026. [Google Scholar] [CrossRef]
- Damour, T.; Esposito-Farèse, G. Nonperturbative strong field effects in tensor-scalar theories of gravitation. Phys. Rev. Lett. 1993, 70, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Esposito-Farèse, G. Tensor-scalar gravity and binary pulsar experiments. Phys. Rev. D 1996, 54, 1474–1491. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Sennett, N.; Buonanno, A.; Kramer, M.; Wex, N. Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors. Phys. Rev. X 2017, 7, 041025. [Google Scholar] [CrossRef]
- Zhao, J.; Shao, L.; Cao, Z.; Ma, B.Q. Reduced-order surrogate models for scalar-tensor gravity in the strong field and applications to binary pulsars and GW170817. arXiv 2019, arXiv:1907.00780. [Google Scholar]
- Yunes, N.; Yagi, K.; Pretorius, F. Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226. Phys. Rev. D 2016, 94, 084002. [Google Scholar] [CrossRef]
- Sathyaprakash, B.S.; Buonanno, A.; Lehner, L.; Van Den Broeck, C.; Ajith, P.; Ghosh, A.; Chatziioannou, K.; Pani, P.; Puerrer, M.; Sotiriou, T.; et al. Extreme Gravity and Fundamental Physics. arXiv 2019, arXiv:1903.09221. [Google Scholar]
- Carson, Z.; Seymour, B.C.; Yagi, K. Future Prospects for Probing Scalar-Tensor Theories with Gravitational Waves from Mixed Binaries. arXiv 2019, arXiv:1907.03897. [Google Scholar]
- Kramer, M.; Backer, D.C.; Cordes, J.M.; Lazio, T.J.W.; Stappers, B.W.; Johnston, S. Strong-field tests of gravity using pulsars and black holes. New Astron. Rev. 2004, 48, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Stairs, I.H.; Antoniadis, J.; Deller, A.T.; Freire, P.C.C.; Hessels, J.W.T.; Janssen, G.H.; Kramer, M.; Kunz, J.; Lämmerzahl, C.; et al. Testing Gravity with Pulsars in the SKA Era. In Proceedings of the Advancing Astrophysics with the Square Kilometre Array, Giardini Naxos, Italy, 9–13 June 2014; Volume AASKA14, p. 042. [Google Scholar]
- Bull, P.; Camera, S.; Kelley, K.; Padmanabhan, H.; Pritchard, J.; Raccanelli, A.; Riemer-Sørensen, S.; Shao, L.; Andrianomena, S.; Athanassoula, E.; et al. Fundamental Physics with the Square Kilometre Array. arXiv 2018, arXiv:1810.02680. [Google Scholar]
- Bailes, M.; Barr, E.; Bhat, N.D.R.; Brink, J.; Buchner, S.; Burgay, M.; Camilo, F.; Champion, D.J.; Hessels, J.; Janssen, G.H.; et al. MeerTime—The MeerKAT Key Science Program on Pulsar Timing. In Proceedings of the MeerKAT Science: On the Pathway to the SKA (MeerKAT2016), Stellenbosch, South Africa, 25–27 May 2016; Volume MeerKAT2016, p. 011. [Google Scholar] [CrossRef]
Neutron Stars | White Dwarfs | |
---|---|---|
Electron number, | ||
Proton number, | ||
Neutron number, | ||
Composite m | ||
Composite | ||
Composite |
Neutron Star–Neutron Star | Neutron Star–White Dwarf | |||||
---|---|---|---|---|---|---|
n | p | e | n | p | e | |
1 | 0 | 0 | ||||
0 | 0 | |||||
2 | 0 | 0 | ||||
0 | 0 | 0 | ||||
0 | 0 | |||||
0 | 0 | 0 | ||||
1 | 0 | 0 | ||||
0 | 0 |
Pulsar | J0348+0432 | J0751+1807 | J1738+0333 |
---|---|---|---|
Observational span, (year) | ∼3.7 | ∼17.6 | ∼10.0 |
Orbital period, (day) | 0.102424062722(7) | 0.263144270792(7) | 0.3547907398724(13) |
Pulsar’s projected semimajor axis, (lt-s) | 0.14097938(7) | 0.3966158(3) | 0.343429130(17) |
19(10) | 33(5) | ||
14(10) | 3.8(50) | 3.1(11) | |
Time derivative of , | – | ||
NS mass, | 2.01(4) | 1.64(15) | |
WD mass, | 0.172(3) | 0.16(1) |
SME Coefficients | PSR J0348+0432 | PSR J0751+1807 | PSR J1738+0333 |
---|---|---|---|
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, L. Lorentz-Violating Matter-Gravity Couplings in Small-Eccentricity Binary Pulsars. Symmetry 2019, 11, 1098. https://doi.org/10.3390/sym11091098
Shao L. Lorentz-Violating Matter-Gravity Couplings in Small-Eccentricity Binary Pulsars. Symmetry. 2019; 11(9):1098. https://doi.org/10.3390/sym11091098
Chicago/Turabian StyleShao, Lijing. 2019. "Lorentz-Violating Matter-Gravity Couplings in Small-Eccentricity Binary Pulsars" Symmetry 11, no. 9: 1098. https://doi.org/10.3390/sym11091098
APA StyleShao, L. (2019). Lorentz-Violating Matter-Gravity Couplings in Small-Eccentricity Binary Pulsars. Symmetry, 11(9), 1098. https://doi.org/10.3390/sym11091098