High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications
Abstract
1. Introduction
2. Model and Hamiltonian
3. Generation of Photonic Hyperentangled Cluster States
4. Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ren, X.F.; Guo, G.P.; Li, J.; Guo, G.C. Entanglement of the Hermite–Gaussian modes states of photons. Phys. Lett. A 2005, 341, 81–86. [Google Scholar] [CrossRef][Green Version]
- Guo, G.P.; Ren, X.F.; Huang, Y.F.; Li, C.F.; Ou, Z.Y.; Guo, G.C. Observation of two-photon coherence in plasmon-assisted transmission. Phys. Lett. A 2007, 361, 218–222. [Google Scholar] [CrossRef]
- Barbieri, M.; Vallone, G.; Mataloni, P.; Martini, F.D. Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 2007, 75, 042317. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282. [Google Scholar] [CrossRef]
- Vallone, G.; Donati, G.; Ceccarelli, R.; Mataloni, P. Six-qubit two-photon hyperentangled cluster states: Characterization and application to quantum computation. Phys. Rev. A 2010, 81, 052301. [Google Scholar] [CrossRef]
- Bin, G.; Yu-Gai, H.; Xia, F.; Chen, Y.L. Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 2011, 56, 659. [Google Scholar]
- Zhao, R.T.; Guo, Q.; Chen, L.; Wang, H.F.; Zhang, S. Quantum superdense coding based on hyperentanglement. Chin. Phys. B 2012, 21, 080303. [Google Scholar] [CrossRef]
- Ren, B.C.; Deng, F.G. Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser. Phys. Lett. 2013, 10, 115201. [Google Scholar] [CrossRef]
- Hong, C.H.; Heo, J.; Lim, J.I.; Hyung, J.Y. Quantum secure direct communication network with hyperentanglement. Chin. Phys. B 2014, 23, 090309. [Google Scholar] [CrossRef]
- Perumangatt, C.; Rahim, A.A.; Salla, G.R.; Paul, G.; Singh, R.P. Three-particle hyper-entanglement: Teleportation and quantum key distribution. Quantum Inf. Process. 2015, 14, 3813–3826. [Google Scholar] [CrossRef][Green Version]
- Liu, Q.; Zhang, M. Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 2015, 91, 062321. [Google Scholar] [CrossRef]
- Li, X.H.; Ghose, S. Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A 2016, 93, 022302. [Google Scholar] [CrossRef]
- Deng, F.G.; Ren, B.C.; Li, X.H. Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 2017, 62, 46–68. [Google Scholar] [CrossRef]
- Jelezko, F.; Gaebel, T.; Popa, I.; Gruber, A.; Wrachtrup, J. Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 2004, 92, 076401. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Zhou, F.; Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Multipurpose Quantum Simulator Based on a Hybrid Solid-State Quantum Device. Symmetry 2019, 11, 467. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, X.; Shi, Z.; Zhou, F.; Xiang, S.; Song, K. Implementation of one-way quantum computing with a hybrid solid-state quantum system. Chin. J. Electron. 2017, 26, 27–34. [Google Scholar] [CrossRef]
- Chen, S.; Xiang, S.; Song, K.; Zhao, Y. Influence from cavity decay on entanglement evolution of three superconducting charge qubits coupled to a cavity. Chin. J. Electron. 2014, 23, 157–162. [Google Scholar]
- Zhao, Y.; Fang, X.M.; Zhou, F.; Song, K.H. Preparation of N-qubit GHZ state with a hybrid quantum system based on nitrogen-vacancy centers. Chin. Phys. Lett. 2013, 30, 050304. [Google Scholar] [CrossRef]
- Kennedy, T.A.; Colton, J.S.; Butler, J.E.; Linares, R.C.; Doering, P.J. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Appl. Phys. Lett. 2013, 83, 4190–4192. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D.S. Temperature-Dependent Raman Scattering of Large Size Hexagonal Bi2Se3 Single-Crystal Nanoplates. Appl. Sci. 2018, 8, 1794. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Zhou, W.; Tang, D.S. Temperature dependent Raman of BiTe nanotubes. AIP Adv. 2018, 8, 125330. [Google Scholar] [CrossRef]
- Zhao, Y.F.X.M.; Zhou, F.; Song, K.H. Scheme for realizing quantum-information storage and retrieval from quantum memory based on nitrogen-vacancy centers. Phys. Rev. A 2012, 86, 052325. [Google Scholar] [CrossRef]
- Zhao, Y.; Mi, X.W.; Xiang, S.; Zhou, F.; Song, K. Entanglement Dynamics of Three Superconducting Charge Qubits Coupled to a Cavity. Commun. Theor. Phys. 2011, 55, 775. [Google Scholar] [CrossRef]
- Twamley, J.; Barrett, S.D. Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond. Phys. Rev. B 2010, 81, 241202. [Google Scholar] [CrossRef]
- Marcos, D.; Wubs, M.; Taylor, J.M.; Lukin, M.D.; Sϕrensen, A.S. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. Phys. Rev. Lett. 2010, 105, 210501. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.L.; Yin, Z.Q.; Xu, Z.Y.; Feng, M.; Oh, C.H. Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys. Rev. A 2011, 84, 043849. [Google Scholar] [CrossRef]
- Yang, W.L.; Xu, Z.Y.; Feng, M.; Du, J.F. Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 2010, 12, 113039. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, W.; Feng, M.; Du, J.F. Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 2011, 83, 054305. [Google Scholar] [CrossRef]
- Wei, H.R.; Deng, F.G. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 2013, 88, 042323. [Google Scholar] [CrossRef]
- Vallone, G.; Ceccarelli, R.; Martini, D.F.; Mataloni, P. Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 2009, 79, 030301. [Google Scholar] [CrossRef]
- Yan, X.; Yu, Y.F.; Zhang, Z.M. Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity. Chin. Phys. B 2014, 23, 060306. [Google Scholar] [CrossRef]
- Wei, H.R.; Deng, F.G.; Long, G.L. Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express 2016, 24, 18619–18630. [Google Scholar] [CrossRef] [PubMed]
- Ciampini, M.A.; Orieux, A.; Paesani, S.; Ramponi, R.; Osellame, R.; Mataloni, P. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 2016, 5, e16064. [Google Scholar] [CrossRef] [PubMed]
- Togan, E.; Chu, Y.; Trifonov, A.S. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010, 466, 730. [Google Scholar] [CrossRef] [PubMed]
- Walls, D.F.; Milburn, G.J.; Garrison, J.C. Quantum Optics. Phys. Today 1995, 48, 55–56. [Google Scholar] [CrossRef]
- An, J.H.; Feng, M.; Oh, C.H. Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 2009, 79, 032303. [Google Scholar] [CrossRef]
- Park, Y.S.; Cook, A.K.; Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 2006, 6, 2075–2079. [Google Scholar] [CrossRef] [PubMed]
- Barclay, P.E.; Fu, K.M.C.; Santori, C.; Faraon, A.; Beausoleil, R.G. Hybrid nanocavity resonant enhancement of color center emission in diamond. Phys. Rev. X 2011, 1, 011007. [Google Scholar] [CrossRef]
- Neumann, P.; Kolesov, R.; Naydenov, B.; Steiner, M.; Jacques, V.; Balasubramanian, G.; Markham, M.L.; Twitchen, D.J. Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 2010, 6, 249. [Google Scholar] [CrossRef]
- Ji, Y.Q.; Jin, Z.; Zhu, A.D.; Wang, H.F.; Zhang, S. Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection. Chin. Phys. B 2014, 23, 050306. [Google Scholar] [CrossRef]
Four Symmetry Hyperentangled Cluster States | ||
---|---|---|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Zhou, F.; Zhang, L.; Xiang, S.; Song, K.; Zhao, Y. High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications. Symmetry 2019, 11, 1079. https://doi.org/10.3390/sym11091079
Tan L, Zhou F, Zhang L, Xiang S, Song K, Zhao Y. High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications. Symmetry. 2019; 11(9):1079. https://doi.org/10.3390/sym11091079
Chicago/Turabian StyleTan, Liu, Fang Zhou, Lingxia Zhang, Shaohua Xiang, Kehui Song, and Yujing Zhao. 2019. "High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications" Symmetry 11, no. 9: 1079. https://doi.org/10.3390/sym11091079
APA StyleTan, L., Zhou, F., Zhang, L., Xiang, S., Song, K., & Zhao, Y. (2019). High-Fidelity Hyperentangled Cluster States of Two-Photon Systems and Their Applications. Symmetry, 11(9), 1079. https://doi.org/10.3390/sym11091079