On Quasi-Homogeneous Production Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- i.
- The production has constant elasticity with respect to an input if and only if f reduces to the one of the following:
- (a)
- a function of the formor
- (b)
- a function of the form
- ii.
- The production has constant elasticity with respect to all inputs , , if and only if
- iii.
- f satisfies the PMRS property if and only f reduces to the one of the following:
- (a)
- a quasi-homogeneous function of degree 0 defined by the following homothetic symmetric CD production function
- (b)
- a quasi-homogeneous function of degree defined by the following symmetric CD production function
- i.
- The output elasticity with respect to capital is a constant k if and only if f reduces to the one of the following:
- (a)
- a function having the form:
- (b)
- a CD production function given by:
- ii.
- The output elasticity with respect to labor is a constant k if and only if f reduces to the one of the following:
- (a)
- a function having the form:
- (b)
- a CD production function given by:
- iii.
- The output elasticities of labor and capital are both constant, k and l, respectively, if and only if
- iv.
- f satisfies the PMRS property if and only if f reduces to the one of the following:
- (a)
- a quasi-homogeneous function of degree 0 defined by the following homothetic CD production function
- (b)
- a quasi-homogeneous function of degree defined by the following CD production function
4. Conclusions and Future Works
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shephard, R. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Thompson, A. Economics of the Firm, Theory and Practice; Prentice Hall: Upper Saddle River, NJ, USA, 1981. [Google Scholar]
- Chen, B.-Y. Classification of h-homogeneous production functions with constant elasticity of substitution. Tamkang J. Math. 2012, 43, 321–328. [Google Scholar] [CrossRef]
- Ioan, C.A.; Ioan, G. A generalization of a class of production functions. Appl. Econ. Lett. 2011, 18, 1777–1784. [Google Scholar] [CrossRef]
- Losonczi, L. Production functions having the CES property. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 2010, 26, 113–125. [Google Scholar]
- Vîlcu, G.E. On a generalization of a class of production functions. Appl. Econ. Lett. 2018, 25, 106–110. [Google Scholar] [CrossRef]
- Wang, X. A characterization of CES production functions having constant return to scale in microeconomics. Int. J. Appl. Math. Stat. 2014, 52, 152–158. [Google Scholar]
- Alodan, H.; Chen, B.-Y.; Deshmukh, S.; Vîlcu, G.E. On some geometric properties of quasi-product production models. J. Math. Anal. Appl. 2019, 474, 693–711. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Geometry of quasi-sum production functions with constant elasticity of substitution property. J. Adv. Math. Stud. 2012, 5, 90–97. [Google Scholar]
- Chen, B.-Y. Classification of homothetic functions with constant elasticity of substitution and its geometric applications. Int. Electron. J. Geom. 2012, 5, 67–78. [Google Scholar]
- Vîlcu, A.D.; Vîlcu, G.E. Some characterizations of the quasi-sum production models with proportional marginal rate of substitution. C. R. Math. Acad. Sci. Paris 2015, 353, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Aydin, M.E.; Ergüt, M. Homothetic functions with Allen’s perspective and its geometric applications. Kragujevac J. Math. 2014, 38, 185–194. [Google Scholar]
- Aydin, M.E.; Ergüt, M. Composite functions with Allen determinants and their applications to production models in economics. Tamkang J. Math. 2014, 45, 427–435. [Google Scholar] [CrossRef]
- Aydin, M.E.; Ergüt, M. Hessian determinants of composite functions with applications for production functions in economics. Kragujevac J. Math. 2014, 38, 259–268. [Google Scholar] [CrossRef]
- Aydin, M.E.; Ergüt, M. A classification of homothetical hypersurfaces in Euclidean spaces via Allen determinants and its applications. Appl. Sci. 2015, 17, 1–8. [Google Scholar]
- Aydin, M.E.; Mihai, A. Classification of quasi-sum production functions with Allen determinants. Filomat 2015, 29, 1351–1359. [Google Scholar] [CrossRef]
- Chen, B.-Y. On some geometric properties of h-homogeneous production functions in microeconomics. Kragujevac J. Math. 2011, 35, 343–357. [Google Scholar]
- Chen, B.-Y. On some geometric properties of quasi-sum production models. J. Math. Anal. Appl. 2012, 392, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Solutions to homogeneous Monge-Ampère equations of homothetic functions and their applications to production models in economics. J. Math. Anal. Appl. 2014, 411, 223–229. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Decu, S.; Verstraelen, L. Notes on isotropic geometry of production models. Kragujevac J. Math. 2014, 38, 23–33. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Vîlcu, G.E. Geometric classifications of homogeneous production functions. Appl. Math. Comput. 2013, 225, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Decu, S.; Verstraelen, L. A note on the isotropical geometry of production surfaces. Kragujevac J. Math. 2013, 37, 217–220. [Google Scholar]
- Fu, Y.; Wang, W.G. Geometric characterizations of quasi-product production models in economics. Filomat 2017, 31, 1601–1609. [Google Scholar] [CrossRef]
- Wang, X. A geometric characterization of homogeneous production models in economics. Filomat 2016, 30, 3465–3471. [Google Scholar] [CrossRef]
- Wang, X.; Fu, Y. Some characterizations of the Cobb-Douglas and CES production functions in microeconomics. Abstr. Appl. Anal. 2013, 2013. [Google Scholar] [CrossRef]
- Vîlcu, A.D.; Vîlcu, G.E. On some geometric properties of the generalized CES production functions. Appl. Math. Comput. 2011, 218, 124–129. [Google Scholar] [CrossRef]
- Vîlcu, G.E. A geometric perspective on the generalized Cobb-Douglas production functions. Appl. Math. Lett. 2011, 24, 777–783. [Google Scholar] [CrossRef]
- Khatskevich, G.A.; Pranevich, A.F. On quasi-homogeneous production functions with constant elasticity of factors substitution. J. Belarus. State Univ. Econ. 2017, 1, 46–50. [Google Scholar]
- Eichhorn, W.; Oettli, W. Mehrproduktunternehmungen mit linearen expansionswegen. Oper. Res. Verfahren. 1969, 6, 101–117. [Google Scholar] [CrossRef]
- Eichhorn, W. Theorie Der Homogenen Produktionsfunktion; Springer: Berlin, Germany, 1970. [Google Scholar]
- Jensen, B. The Dynamic Systems of Basic Economic Growth Models; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Färe, R.; Shephard, R. Ray-homothetic production functions. Econometrica 1977, 45, 133–146. [Google Scholar]
- Mak, K.-T. General homothetic production correspondences. In Applications of Modern Production Theory: Efficiency and Productivity; Dogramaci, A., Färe, R., Eds.; Springer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Shephard, R. Some remarks on the theory of homogeneous production functions. Z. Nationalökonomie 1971, 31, 251–256. [Google Scholar] [CrossRef]
- Vîlcu, A.D.; Vîlcu, G.E. On homogeneous production functions with proportional marginal rate of substitution. Math. Probl. Eng. 2013, 2013. [Google Scholar] [CrossRef]
- Cobb, C.W.; Douglas, P.H. A theory of production. Am. Econ. Rev. 1928, 18, 139–165. [Google Scholar]
- Arrow, K.J.; Chenery, H.B.; Minhas, B.S.; Solow, R.M. Capital-labor substitution and economic efficiency. Rev. Econom. Stat. 1961, 43, 225–250. [Google Scholar] [CrossRef]
- Uzawa, H. Production functions with Constant Elasticities of Substitution. Rev. Econ. Stud. 1962, 29, 291–299. [Google Scholar] [CrossRef]
- McFadden, D. Constant Elasticity of Substitution Production Functions. Rev. Econ. Stud. 1963, 30, 73–83. [Google Scholar] [CrossRef]
- Mishra, S.K. A Brief History of Production Functions. IUP J. Manag. Econom. 2010, 8, 6–34. [Google Scholar] [CrossRef]
- Goriely, A. Integrability and Nonintegrability of Dynamical Systems; World Scientific: Singapore, 2001. [Google Scholar]
- Anosov, D.V.; Aranson, S.K.; Arnold, V.I.; Bronshtein, I.U.; Grines, V.Z.; Il’yashenko, Y.S. Ordinary Differential Equations and Smooth Dynamical Systems; Springer: Berlin, Germany, 1997. [Google Scholar]
- Shephard, R. Semi-homogeneous production functions and scaling of production. In Production Theory; Eichhorn, W., Henn, R., Eds.; Springer: New York, NY, USA, 1974; pp. 253–285. [Google Scholar]
- Al-Ayat, R.; Färe, R. Almost ray-homothetic production correspondences. Z. Nationalökonomie 1979, 39, 143–152. [Google Scholar] [CrossRef]
- Bewley, T.F. General Equilibrium, Overlapping Generations Models and Optimal Growth Theory; Harvard University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Sloane, P.; Latreille, P.; O’Leary, N. Modern Labour Economics; Routledge: New York, NY, USA, 2013. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vîlcu, A.-D.; Vîlcu, G.-E. On Quasi-Homogeneous Production Functions. Symmetry 2019, 11, 976. https://doi.org/10.3390/sym11080976
Vîlcu A-D, Vîlcu G-E. On Quasi-Homogeneous Production Functions. Symmetry. 2019; 11(8):976. https://doi.org/10.3390/sym11080976
Chicago/Turabian StyleVîlcu, Alina-Daniela, and Gabriel-Eduard Vîlcu. 2019. "On Quasi-Homogeneous Production Functions" Symmetry 11, no. 8: 976. https://doi.org/10.3390/sym11080976
APA StyleVîlcu, A.-D., & Vîlcu, G.-E. (2019). On Quasi-Homogeneous Production Functions. Symmetry, 11(8), 976. https://doi.org/10.3390/sym11080976