Study on the Algebraic Structure of Refined Neutrosophic Numbers
Abstract
:1. Introduction
2. Basic Concepts
- (1)
- is well-defined, i.e., for any , one has .
- (2)
- is associative, i.e., for all .
- (1)
- is unique for any .
- (2)
- for any .
- (3)
- for any .
3. The Algebra Structure of Neutrosophic Quadruple Numbers on General Field
- 1.
- Let , then and .
- 2.
- Let , then and , where .
- 3.
- Let , then and , where .
- 1.
- Let , then and , where .
- 2.
- Let , then and , where .
- 3.
- Let , then and , where .
4. The Algebra Structure of Refined Neutrosophic Numbers on General Field
Algorithm 1 Solving the neutral element and opposite elements of each element in . |
Input: 1: ; 2: For 3: ; 4: If 5: Obtain by Table 1; 6: else 7: Obtain by Table 4 combining the values of and ; 8: end 9: Save ; 10: end Output: |
Algorithm 2 Solving the neutral element and opposite elements of each element in . |
Input: 1: ; 2: While 3: ; 4: If 5: Obtain by Table 3; 6: else 7: Obtain by Table 5 combining the values of and ; 8: end 9: Save ; 10: ; 11: end Output: |
- 1.
- From Table 1, and , where .
- 2.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
- 3.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
- 4.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
- 1.
- From Table 1, and , where .
- 2.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
- 3.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
- 4.
- From Table 4 and combining the results of the above step: Being and , thus and , where .
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, TX, USA, 1998. [Google Scholar]
- Smarandache, F.; Ali, M. Neutrosophic triplet group. Neural Comput. Appl. 2018, 29, 595–601. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic Perspectives: Triplets, Duplets, Multisets, Hybrid Operators, Modal Logic, Hedge Algebras. And Applications; Pons Publishing House: Brussels, Belgium, 2017. [Google Scholar]
- Zhang, X.; Hu, Q.; Smarandache, F.; An, X. On Neutrosophic Triplet Groups: Basic Properties, NT-Subgroups, and Some Notes. Symmetry 2018, 10, 289. [Google Scholar] [CrossRef]
- Zhang, X.H.; Bo, C.X.; Smarandache, F.; Dai, J.H. New inclusion relation of neutrosophic sets with applications and related lattice structure. Int. J. Mach. Learn. Cybern. 2018, 9, 1753–1763. [Google Scholar] [CrossRef] [Green Version]
- Bal, M.; Shalla, M.M.; Olgun, N. Neutrosophic Triplet Cosets and Quotient Groups. Symmetry 2017, 10, 126. [Google Scholar] [CrossRef]
- Zhang, X.H.; Smarandache, F.; Liang, X.L. Neutrosophic Duplet Semi-Group and Cancellable Neutrosophic Triplet Groups. Symmetry 2017, 9, 275. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, X.; Yang, X.; Zhou, X. Generalized Neutrosophic Extended Triplet Group. Symmetry 2019, 11, 327. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zhang, X.H. The decomposition theorems of AG-neutrosophic extended triplet loops and strong AG-(l, l)-loops. Mathematics 2019, 7, 268. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, X.Y.; Mao, X.Y.; Smarandache, F.; Park, C. On Neutrosophic Extended Triplet Groups (Loops) and Abel-Grassmann′s Groupoids (AG-Groupoids). J. Intell. Fuzzy Syst. 2019, in press. [Google Scholar]
- Zhang, X.H.; Mao, X.Y.; Wu, Y.T.; Zhai, X.H. Neutrosophic filters in pseudo-BCI algebras. Int. J. Uncertain. Quant. 2018, 8, 511–526. [Google Scholar] [CrossRef]
- Smarandache, F. Hybrid Neutrosophic Triplet Ring in Physical Structures. Bull. Am. Phys. Soc. 2017, 62, 17. [Google Scholar]
- Ali, M.; Smarandache, F.; Khan, M. Study on the development of neutrosophictriplet ring and neutrosophictriplet field. Mathematics 2018, 6, 46. [Google Scholar] [CrossRef]
- Sahin, M.; Abdullah, K. Neutrosophic triplet normed space. Open Phys. 2017, 15, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.H.; Bo, C.X.; Smarandache, F.; Park, C. New operations of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets. Symmetry 2018, 10, 187. [Google Scholar] [CrossRef]
- Agboola, A.; Akinleye, S. Neutrosophic Vector Spaces. Neutrosophic Sets Syst. 2014, 4, 9–18. [Google Scholar]
- Li, Q.; Ma, Y.; Zhang, X.; Zhang, J. Neutrosophic Extended Triplet Group Based on Neutrosophic Quadruple Numbers. Symmetry 2019, 11, 187. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers. Neutrosophic Sets Syst. 2015, 10, 96–98. [Google Scholar]
- Smarandache, F. (T,I,F)-Neutrosophic Structures. Neutrosophic Sets Syst. 2015, 8, 3–10. [Google Scholar] [CrossRef]
- Akinleye1, S.A.; Smarandache, F.; Agboola, A.A.A. On Neutrosophic Quadruple Algebraic Structures. Neutrosophic Sets Syst. 2016, 12, 122–126. [Google Scholar]
- Zhang, X.H. Fuzzy anti-grouped filters and fuzzy normal filters in pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2017, 33, 1767–1774. [Google Scholar] [CrossRef]
- Zhang, X.H.; Borzooei, R.A.; Jun, Y.B. Q-filters of quantum B-algebras and basic implication algebras. Symmetry 2018, 10, 573. [Google Scholar] [CrossRef]
- Zhang, X.H.; Park, C.; Wu, S.P. Soft set theoretical approach to pseudo-BCI algebras. J. Intell. Fuzzy Syst. 2018, 34, 559–568. [Google Scholar] [CrossRef]
The Subset of | Neutral Element | Opposite Elements |
---|---|---|
} | ||
c4 = −(a4(a2 + a3)−1(a2 + a3 + a4)−1) | ||
c4 = −(a4a3−1(a3 + a4)−1) | ||
c3 + c4 = a4−1 + (−(a1 + a2)−1) | ||
c3 = −(a3(a1 + a2)−1(a1 + a2 + a3)−1), | ||
c3 = −(a3(a1 + a2)−1(a1 + a2 + a3)−1), c4 = −(a4(a1 + a2 + a3)−1(a1 + a2 + a3 + a4)−1) |
+ | 0 | 1 | x | y | · | 0 | 1 | x | y |
0 | 0 | 1 | x | y | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | y | x | 1 | 0 | 1 | x | y |
x | x | y | 0 | 1 | x | 0 | x | y | 1 |
y | y | x | 1 | 0 | y | 0 | y | 1 | x |
The Subset of | Neutral Element | Opposite Elements |
---|---|---|
c2 = −(a2a3−1(a2 + a3)−1) | ||
c2 = −(a2(a3 + a4)−1(a2 + a3 + a4)−1) | ||
c2 = −(a2a3−1(a2 + a3)−1) | ||
c2, | ||
c2 + c3 = a2−1 + (−(a1 + a4)−1) | ||
c3 = −(a3(a1 + a4)−1(a1 + a3 + a4)−1), | ||
c3 = −(a3(a1 + a4)−1(a1 + a3 + a4)−1), c2 = −(a2(a1 + a3 + a4)−1(a1 + a2 + a3 + a4)−1) |
The Subset | Neutral Element | Opposite Elements |
---|---|---|
a0 + a1 + … + an = 0 | ||
a0 + a1 + … + an ≠ 0 | ||
a0 + a1 + … + an + an+1 = 0 | ||
a0 + a1 + … + an + an+1 ≠ 0 |
The Subset | Neutral Element | Opposite Elements |
---|---|---|
a0 + a2 + … + an+1 = 0 | ||
a0 + a2 + … + an+1 ≠ 0 | ||
a0 + a1 + … + an + an+1 = 0 | ||
a0 + a1 + … + an + an+1 ≠ 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Ma, Y.; Zhang, X.; Zhang, J. Study on the Algebraic Structure of Refined Neutrosophic Numbers. Symmetry 2019, 11, 954. https://doi.org/10.3390/sym11080954
Li Q, Ma Y, Zhang X, Zhang J. Study on the Algebraic Structure of Refined Neutrosophic Numbers. Symmetry. 2019; 11(8):954. https://doi.org/10.3390/sym11080954
Chicago/Turabian StyleLi, Qiaoyan, Yingcang Ma, Xiaohong Zhang, and Juanjuan Zhang. 2019. "Study on the Algebraic Structure of Refined Neutrosophic Numbers" Symmetry 11, no. 8: 954. https://doi.org/10.3390/sym11080954