Quantum Behavior of a
PT
-Symmetric Two-Mode System with Cross-Kerr Nonlinearity
Abstract
:1. Introduction
2. Quantum Hamiltonian and Dynamical Equations
3. Stationary States and Their Stability
4. Quantum Properties of the Evolving States
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bender, C.M.; Boettcher, S. Real Spectra in non-Hermitian Hamiltonians Having Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S.; Meisinger, P.N. -Symmetric quantum mechanics. J. Math. Phys. 1999, 40, 2201–2229. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Must a Hamiltonian be Hermitian? Am. J. Phys. 2003, 71, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Morales, J.D.H.; Guerrero, J.; López-Aguayo, S.; Rodríguez-Lara, B.M. Revisiting the Optical -Symmetric Dimer. Symmetry 2016, 8, 83. [Google Scholar] [CrossRef]
- Meystre, P.; Sargent, M., III. Elements of Quantum Optics, 4th ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Sargent, M.; Scully, M.O.; Lamb, W.E. Laser Physics; Addison-Wesley: Boston, MA, USA, 1974. [Google Scholar]
- El-Ganainy, R.; Makris, K.G.; Christodoulides, D.N.; Musslimani, Z.H. Theory of coupled optical -Symmetric structures. Opt. Lett. 2007, 32, 2632–2634. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, H.; Kottos, T.; El-Ganainy, R.; Christodoulides, D.N. Unidirectional nonlinear -Symmetric optical structures. Phys. Rev. A 2010, 82, 043803. [Google Scholar] [CrossRef]
- Zyablovsky, A.A.; Vinogradov, A.P.; Pukhov, A.A.; Dorofeenko, A.V.; Lisyansky, A.A. -symmetry in optics. Phys.-Uspekhi 2014, 57, 1063–1082. [Google Scholar] [CrossRef]
- Ögren, M.; Abdullaev, F.K.; Konotop, V.V. Solitons in a -Symmetric χ(2) coupler. Opt. Lett. 2017, 42, 4079–4082. [Google Scholar] [CrossRef]
- Turitsyna, E.G.; Shadrivov, I.V.; Kivshar, Y.S. Guided modes in non-Hermitian optical waveguides. Phys. Rev. A 2017, 96, 033824. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Shi, L.; Ren, L.; Zhang, X. Optical gradient forces in -Symmetric coupled-waveguide structures. Opt. Express 2018, 26, 10220–10229. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhang, J.; Özdemir, S.K.; Peng, B.; Jing, H.; Lü, X.Y.; Li, C.W.; Yang, L.; Nori, F.; Liu, Y.X. Metrology with -Symmetric Cavities: Enhanced Sensitivity near the -Phase Transition. Phys. Rev. Lett. 2016, 117, 110802. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chong, Y.D. symmetry breaking and nonlinear optical isolation in coupled microcavities. Opt. Express 2016, 24, 6916–6930. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, I.I.; Miranowicz, A.; Di Stefano, O.; Stassi, R.; Savasta, S.; Nori, F.; Özdemir, S.K. Scully-Lamb quantum laser model for parity-time-symmetric whispering-gallery microcavities: Gain saturation effects and nonreciprocity. Phys. Rev. A 2019, 99, 053806. [Google Scholar] [CrossRef] [Green Version]
- Graefe, E.M.; Jones, H.F. -Symmetric sinusoidal optical lattices at the symmetry-breaking threshold. Phys. Rev. A 2011, 84, 013818. [Google Scholar] [CrossRef]
- Miri, M.A.; Regensburger, A.; Peschel, U.; Christodoulides, D.N. Optical mesh lattices with symmetry. Phys. Rev. A 2012, 86, 023807. [Google Scholar] [CrossRef]
- Ornigotti, M.; Szameit, A. Quasi -symmetry in passive photonic lattices. J. Opt. 2014, 16, 065501. [Google Scholar] [CrossRef]
- Shui, T.; Yang, W.X.; Li, L.; Wang, X. Lop-sided Raman-Nath diffraction in -antisymmetric atomic lattices. Opt. Lett. 2019, 44, 2089–2092. [Google Scholar] [CrossRef]
- Tchodimou, C.; Djorwe, P.; Nana Engo, S.G. Distant entanglement enhanced in -Symmetric optomechanics. Phys. Rev. A 2017, 96, 033856. [Google Scholar] [CrossRef]
- Wang, D.Y.; Bai, C.H.; Liu, S.; Zhang, S.; Wang, H.F. Distinguishing photon blockade in a -Symmetric optomechanical system. Phys. Rev. A 2019, 99, 043818. [Google Scholar] [CrossRef]
- Peřina, J. Quantum Statistics of Linear and Nonlinear Optical Phenomena; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Agarwal, G.S.; Qu, K. Spontaneous generation of photons in transmission of quantum fields in -Symmetric optical systems. Phys. Rev. A 2012, 85, 31802(R). [Google Scholar] [CrossRef]
- Scheel, S.; Szameit, A. -Symmetric photonic quantum systems with gain and loss do not exist. Eur. Phys. Lett. 2018, 122, 34001. [Google Scholar] [CrossRef]
- Peřinová, V.; Lukš, A.; Křepelka, J. Quantum description of a -Symmetric nonlinear directional coupler. J. Opt. Soc. Am. B 2019, 36, 855–861. [Google Scholar] [CrossRef]
- Antonosyan, D.A.; Solntsev, A.S.; Sukhorukov, A.A. Photon-pair generation in a quadratically nonlinear parity-time symmetric coupler. Phot. Res. 2018, 6, A6–A9. [Google Scholar] [CrossRef]
- Naikoo, J.; Thapliyal, K.; Banerjee, S.; Pathak, A. Quantum Zeno effect and nonclassicality in a -Symmetric system of coupled cavities. Phys. Rev. A 2019, 99, 023820. [Google Scholar] [CrossRef]
- Miranowicz, A.; Leoński, W. Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 1683–1700. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Yan, S.B.; Wang, J.; Xiao, M. Quantum noise effects with Kerr-nonlinearity enhancement in coupled gain-loss waveguides. Phys. Rev. A 2015, 91, 053832. [Google Scholar] [CrossRef]
- Kalaga, J.K.; Kowalewska-Kudłaszyk, A.; Leoński, W.; Barasinski, A. Quantum correlations and entanglement in a model comprised of a short chain of nonlinear oscillators. Phys. Rev. A 2016, 94, 032304. [Google Scholar] [CrossRef] [Green Version]
- Vashahri-Ghamsari, S.; He, B.; Xiao, M. Continuous-variable entanglement generation using a hybrid -Symmetric system. Phys. Rev. A 2017, 96, 033806. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Academic Press: New York, NY, USA, 2003. [Google Scholar]
- Peřina, J., Jr. Coherent light in intense spatiospectral twin beams. Phys. Rev. A 2016, 93, 063857. [Google Scholar] [CrossRef] [Green Version]
- Peřina, J., Jr.; Peřina, J. Quantum statistics of nonlinear optical couplers. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 41, pp. 361–419. [Google Scholar]
- Thapliyal, K.; Pathak, A.; Sen, B.; Peřina, J. Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing, and antibunching. Phys. Rev. A 2014, 90, 013808. [Google Scholar] [CrossRef]
- Sanders, B.C.; Milburn, G.J. Complementarity in a quantum nondemolition measurement. Phys. Rev. A 1989, 39, 694–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leoński, W.; Kowalewska-Kudlaszyk, A. Quantum Scissors and Finite-Dimensional States Engineering. In Progress in Optics; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; Volume 56, pp. 131–185. [Google Scholar]
- Kalaga, J.K.; Jarosik, M.W.; Szczȩśniak, R.; Nguen, T.D.; Leoński, W. Pulsed Nonlinear Coupler as an Effective Tool for the Bell-Like States Generation. Acta Phys. Polon. A 2019, 135, 273–275. [Google Scholar] [CrossRef]
- Kalaga, J.K.; Kowalewska-Kudłaszyk, A.; Jarosik, M.W.; Szczȩśniak, R.; Leoński, W. Enhancement of the entanglement generation via randomly perturbed series of external pulses in a nonlinear Bose-Hubbard dimer. Nonlinear Dyn. 2019. [Google Scholar] [CrossRef]
- Korolkova, N.; Peřina, J. Kerr nonlinear coupler with varying linear coupling coefficient. J. Mod. Opt. 1997, 44, 1525–1534. [Google Scholar] [CrossRef]
- Fiurášek, J.; Křepelka, J.; Peřina, J. Quantum-phase properties of the Kerr couplers. Opt. Commun. 1999, 167, 115–124. [Google Scholar] [CrossRef]
- Ariunbold, G.; Peřina, J. Non-classical behaviour and switching in Kerr nonlinear couplers. J. Mod. Opt. 2001, 48, 1005–1019. [Google Scholar] [CrossRef]
- Bartkowiak, M.; Wu, L.A.; Miranowicz, A. Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 145501. [Google Scholar] [CrossRef]
- Peřina, J., Jr.; Lukš, A.; Kalaga, J.; Leoński, W.; Miranowicz, A. Nonclassical light in quantum -Symmetric two-mode systems. To be published.
- Sukhorukov, A.A.; Xu, Z.; Kivshar, Y.S. Nonlinear suppression of time reversals in -Symmetric optical couplers. Phys. Rev. A 2010, 83, 043818. [Google Scholar] [CrossRef]
- Callen, H.B.; Welton, T.A. Irreversibility and Generalized Noise. Phys. Rev. 1951, 83, 34–40. [Google Scholar] [CrossRef]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar] [CrossRef] [Green Version]
- Lukš, A.; Peřinová, V.; Peřina, J. Principal squeezing of vacuum fluctuations. Opt. Commun. 1988, 67, 149–151. [Google Scholar] [CrossRef]
- Hill, S.; Wootters, W.K. Computable entanglement. Phys. Rev. Lett. 1997, 78, 5022. [Google Scholar] [CrossRef]
- Adesso, G.; Illuminati, F. Entanglement in continuous variable systems: Recent advances and current perspectives. J. Phys. A Math. Theor. 2007, 40, 7821–7880. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peřina, J., Jr.; Lukš, A.
Quantum Behavior of a
Peřina J Jr., Lukš A.
Quantum Behavior of a
Peřina, Jan, Jr., and Antonín Lukš.
2019. "Quantum Behavior of a
Peřina, J., Jr., & Lukš, A.
(2019). Quantum Behavior of a